Profiling Large-Scale Heterogeneous
Applications with Intel® VTune™ Profiler

Xiao Zhu, Rupak Roy- Technical Consulting Engineer (Intel Corporation)

intel

Agenda

VTune Profiling Capabilities

Latest Features in Vtune

* Deep Dive into VTune Features
* CPU Profiling
* GPU Profiling

GPU Roofline

intel.

2

Optimize Performance

Intel® VTune™ Profiler

Get the Right Data to Find Bottlenecks

= A suite of profiling for CPU, GPU, FPGA,, memory, cache,
storage, offload, power...

Application or system-wide analysis

DPC++, C, C++, Fortran, Python*, Go*, Java*, or a mix
Linux, Windows, FreeBSD, Android, Yocto and more
Containers and VMs

Analyze Data Faster

= Collect data HW/SW sampling and tracing w/o re-
compilation

= See results on your source, in architecture diagrams, as a
histogram, on a timeline...

= Filter and organize data to find answers

Work Your Way

= Userinterface or command line
= Profile locally and remotely

ALGORITHM

©O © O

Hotspots Memory Anomaly
Consumption Detection

PARALLELISM

©

Threading HPC
Performance
Characterization

ACCELERATORS

© O o

GPU GPU CPU/FPGA
Offload Compute/Media Interaction
Hotspots

Assembly

@ MICROARCHITECTURE

Performance

Snapshot
O

Microarchitecture Memory
Exploration Access

e

)

Input and Output

PLATFORM ANALYSES

@ @ O

System Throttling Platform
Qverview Profiler

o W e e o

&% GPU Instructions Executed by Instruction T__*

Control Flow B Send & Wait
Int32 & SP Float @ Int64 & DP Float @ Other

75,002,500 []
12,500,000

12,500,000

Uncore System

eDRAM <> LLC DRAM

-— 24378 10.745 —=

Untyped: 1574
<— Typed: 0.000 Total: 30.961
SLM: 0.000

Untyped: 24 084

Typed 0714 —»
SLM: 0.000

intel.

3

Rich Set of Profiling Capabilities

Intel® VTune™ Profiler

e e R

Famme
N

Algorithm Optimization

The metric value is high.
“This can indicate that the
significant fraction of
execution pipeline slots
could be stalled due to
demand memory load and
stores. Use Memory
83.1% - Memory Bound Access analysis to have
the metricbrakdow by
memory hierarchy,
memory bandwidth
information, correlation by
mcmorv objects.

p.Plpe
This diagram represents inefficiencies in CPU usage. Treat it as a pipe with an output flow
equal to the "pipe efficiency” ratio: (Actual Instructions Retired)/(Maximum Possible
Instruction Retired). If there are pipeline stalls decreasing the pipe efficiency, the pipe

shape gets more narrow.

v’ Hotspots
v' Anomaly Detection
v' Memory Consumption

Microarch.&Memory Bottlenecks

GPU Offioad aeudiicas - @
Anass Confquian Coleciknlon Summary Gladhics Tt
Cot—ww

7

B

v Microarchitecture Exploration
v’ Memory Access

Accelerators / xPU

Parallelism

i =] = % = ki
bus0 || busd bus88 || busss || busol || husba
deviced | | device device@ | | deviceD || device® | | deviced
+ + +
: Pele 4Dxa: PCIe 40x8: PCIe 408 PCle 4048 PCle 4D
omi1am PSR .

56% 366% 363% 355
(] i 4]

= = =

o]
DRAM SOCKET 0 SOCKET 1 DRAM
Average Physieal Core Utlization: Average Physical Care Utllization:

37,25 (9.984 out of 32} 0.0% (0,000 out of 32)
upl

547% 205% 11

t t
PCle 4048 FCle 4,058
3535 35.6%

+
& =

busca || buscd
dovice 0 | | device 0

v' GPU Offload

v' GPU Compute / Media Hotspots
v' CPU/FPGA Interaction

v’ Threading
v' HPC Performance Characterization

Platform

v' Input and Output
v’ System Overview
v’ Platform Profiler

Multi-Node

v’ Application Performance Snapshot

intel.

4

What’s New in Intel® VTune™ Profiler

Profile your applications running on latest Intel HW

* 4th generation Intel® Xeon® Scalable processors (formerly code named Sapphire Rapids)
* Intel® Xeon® Max Series CPUs (code named Sapphire Rapids HBM)

e 13th generation Intel® Core™ processors (formerly code named Raptor Lake),

* Intel® Data Center GPU Max Series (formerly code named Ponte Vecchio).

Accelerate GPU code

* Get visibility into XeLink cross-card traffic for issues such as stack-to-stack traffic, throughput and bandwidth
bottlenecks. Identify imbalances of traffic between CPU and GPU through a GPU topology diagram.

* Identify the reasons of the stalls in Xe Vector Engines (XVEs), formerly known as Execution Units (EUs). Use
this information to better understand and resolve the stalls in your busiest computing tasks.

* Profile applications executing on multiple GPUs.

Optimize Python code

* Identify and optimize performance hotspots of Python code, now supporting Python 3.9.*.
Decide memory mode for your workload

* Identify performance gained from high bandwidth memory (HBM). Run Intel® VTune Profiler for each mode
(HBM only, Flat, Cache) to identify which profile offers the best performance.

) GPU Topology Diagram

Use this topology diagram to examine the GPU interconnect (Xe Link) and identify stack-stack, GPU-socket, and GPU-GPU bandwidths. Hover over a GPU stack to see bandwidth metrics.

Links Utilization Communication Bandwict
— Actively utilized Incoming, GB/s
Outgoing. GB/s
= =
0:108:0.0 1:24:00
0.007 0.007
0.007 0.007
g g g 7
e | 4 dgf / :
0012
2.684 (1=l
t — 1:106:0.0
1) ;’ 1) 0007
el = 0.007
Stack0 \
1 o : o
0.007 0.007
0.007 0.007
= =
0:66:0.0 1:66:0.0

Cross-card, stack-to-stack, and card-to-socket bandwidth are presented on GPU
Topology Diagram.

) Bandwidth Utilization Histogram
Explore bandwidth utiization over time using the histogram and identify memory objects of funcions with maximum contrbution {0 the high bandwidih utiization

Banawidtn Domain: [HBIW. GBlsec)
© B:

e sligers at the bottom of the histogram to define thresholds for Low, Medium and High utiization levels. You can use these bandwicth utiization types in
ization type. To leam bandwidth capabilies, refer to your system specifications or run appropriate benchmarks to measure them; for example, Intel

H

H

H
E
8

| €l
| i
i H]
i I
| 3
i I
i I
i I
i I
i i
i i
i I
i i

—— o

The histogram shows the distribution of the elapsed time per maximum bandwidth
utilization among all packages.

intel.

intel.

XeON

MAX SERIES

Only x86 CPU with High

Bandwidth Memory

64GB s DDRS
; 112.5M B 8 channels per
ek R o o
J
—

~1TB/s memory BW

>1GB/core HBM memory capacity

* Relative performance I1SO TDP and core count

intel.

Memory modes

HBM Only

Workloads < 64GB capacity

No code change
No DDR

System boots and
operates with
HBM only

HBM

HBM Flat Mode

Flat Mem Regions w/ HBM & DRAM
Workloads > 64GB capacity

Code change may be needed
to optimize perf

Provides flexibility for
applications that require
large memory capacity

HBM Caching Mode

DRAM backed cache
Improved performance for workloads > 64GB capacity

No code change
HBM Caches DDR

Blend of both prior modes. Whole
applications may fit in HBM cache
Blurs line between cache and memory

High Bandwidth Memory (HBM) Utilization

Intel® VTune™ Profiler

Understand HBM memory usage

* |sthe application performance affected by HBM utilization?
: . _— . L
* How is the bandwidth distributed between DRAM vs. HBM? I
. The histogram shows the distribution of the elapsed time per maximum bandwidth utilization
Identify memory mode for your workload among all packages.
S g S

o: 4+ = ; % 2

» package_0 =]

* Does your workload benefit from HBM?

» package_1

package 1

* Profile your workload for each mode - HBM, flat or cache

package 0

uuuuu

‘‘‘‘‘

n Oulgoing, (%) | HBM Banduwidth } RAM Ban dwidth

The workload performance in various HBM modes can be evaluated by running the collection in
each mode and analyzing the bandwidth as described above.

intel.

Get Visibility into Xe Link Cross-card Traffic

Intel® VTune™ Profiler

|dentify bottlenecks related to Xe Link

* Understand cross-card memory transfers and
Xe Link utilization

* Visualize GPU Topology of the system and

estimate bandwidth of each link, stack or card.

* See usage of Xe Link and correlate with code
execution.

GPU Topology Diagram
Use this topology diagram to examine the GPU int

Links Utilization Communication Bandwidth:
Incoming, GBYs

SSSSSSS
9

Cross-card, stack-to-stack, and card-to-socket bandwidth are presented on GPU Topology
Diagram.

GPU Offload cPu Officad + @
Analysis Configuration ~ Collection Log Summary Graphics ~ Platform
O: =+ 2 =

v 0:24:00
v GPU Stack 0
0:24:0.0/0 - 1:24:0.0/0
0:24:0.0/0 - 0:108:0.0/0
0:24:0.0/0 - 0:66:0.011 l
0:24:0.0/0 - 1:66:0.0/0 l

Xe Link Usage

0:24:0.0/0 - 1:108:0.0/1
» GPU Stack 1 l | [l
» 1:24:0.0 i i l i |
» 1108:0.0 l] i
» 0:66:0.0 l l [[i
» 0:108:0.0 [N]
» 1:66:0.0 | [[| |

Timeline view can show bandwidth usage of Xe Link over time.

intel.

8

Access Intel® VTune ™ Profiler via web browser

Interactive analysis Command line analysis

1) Configure SSH to a remote Linux* target 1) Run command line remotely on Linux* targe

2) Choose and run analysis with the Ul

T httpsi//127.0.0.1:45361/ui/fsampl. X +

= C ft A Not

t

Welcome rO00hs r001ue *
= - . 7
@ f' A I . Microarchitecture Exploration ® 1) INTEL VTUNE PROFILER
E on Ig ure na 5\'5'5 Analysis Configuration Collection Log Summary Bottom-up Event Count Platform | multiply.c
Assembly W6 e | b o
) .) .)) Source # Clockticks | CPI Rate
] File Edit Selection View Go Run Terminal multiply.c - ves [SSH
..- / This lsads to bad cache rsuss and significant memory stz =
multiply.c X {} i} e Micrearchitecture and Memory access analysis to estij
Local Host Android Device Remote Linux I A S :
;) build > install > release > samples > en > C++ > matrix > src > multiply
IADBJ {SSH] [n The CPI may be too high. This
& iy o I - . sz could be caused by issues such as
for(i=tidx; i<msize; i=itnumt) { memory stalls, instruction 4.086
0; j<msi ze;] ++) { starvation, branch misprediction [""”ggd'j,']
= c or long latency instructions. S
for(k=0; k<msize; k++) { Explore the other hardware-
. related metrics to identify what i:
c[i][3] = c[i1[3] + a[i][k] * b[k] causing high CPI
¥

> SSH: lin-dev

TERMINAL

’ vtune-backend +~ [W ~

bash-4.3% vtune-backend

No TLS certificate was provided as a --tls-certificate command-line argument thus a
self-signed certificate is generated to enable secure HTTPS transport for the web se
rver: /nfs/site/home/ssnevero/.intel/vtune/settings/certificates/middleware.crt.
Serving GUI at https://127.0.0.1:4536120one-time-token=e@1dfe@b5de@3a14@53cacb5f80aa%6

3 master & Python36964-bit ®@O0A0 W5 & debug (vcs) UTF-8 CRLF C

Linux (2

intel.

9

Command Line Interface

Automate analysis

e Set up the environment variables:
—Windows: <install-dir>\env\vars.bat
— Linux: <install-dir>/env/vars.sh

Help:
vtune —help
vtune —help collect hotspots

Use Ul to setup

1) Configure analysis in Ul

2) Press “Command Line...” button
3) Copy & paste command

Command Line

Copy Command Line to Clipboard X
Command line:
I'C:\Prugram Files (x86)\IntelSWTools\VTune Amplifier 2019\bin64\amphe-cl" -collect hotspots -app-

working-dir "C:\Test Cases for AXE\Smoke\bin\release" --search-dir "sym=srv*C:\Test Cases for AXE
\Smoke*http://msdl.microsoft.com/download/symbols" --search-dir "bin=sn*C:\Test Cases for AXE
\Smoke*http://msdl.microsoft.com/download/symbols” -- "C:\Test Cases for AXE\Smoke\bin\release
\Smoke.exe"

Copy Close

Use -collect-with action

[~ Hid®™wqobs with default values

vtune -collect hpc-performance [-knob <knobName=knobValue>] [--] <app>

mpiexec —n 12 vtune —c gpu-hotspots —r gpuhs_mpi —trace-mpi [-knob
<knobName=knobValue>] [--] <app>

intel.

10

Custom Analysis with VTune Profiler

INTELVTUNEPROFILER
N

@ GPU computEfMEdia Hotsp ts (Customize a copy of the selected analysis. (13

@ GPU Compute/Media Hotspots (preview))) ‘
Analyze the most time-consuming GPU kernels, characterize
performance issues caused by memory latency or inefficient

| Step2 |

s TargetGPU 1

All devices

Perforr | Trace GPU programming APIs

Snap (® Characterization ® .
GPU profiling mode

Compute Basic (with global/local memory accesses)

=

. INTELVTUNEP

ROFILER

allow-multiple-runs

ALG C’)F\]H— H I\/] GPU sampling interval, ms —
o o . 1 GPU events selection
f=
Analyze memory and cross-socket bandwidth o b
Hotspots Anomaly Memory
Detection Consumption ¥| Trace GPU programming APls hd Event Name

(preview) Analyze power usage ~| L3_READ _L3BANKO (L3_READ_L3BAN...
SR RS | L3_READ _L3BANKI (L3_READ_L3BAN...
- - ~| L3_READ _L3BANK10 (L3_READ_L3BA...
PARALLELISM Eamputing task ot Intersat ¥/ L3 READ L3BANK11 (L3 READ_L3BA...
~| L3_READ _L3BANKI12 (L3_READ_L3BA...
betaile ~| L3_READ L3BANK13 (L3_READ _L3BA...
Threading S3HC ~| L3_READ L3BANK14 (L3_READ_L3BA...
Performance | L3_READ _L3BANK15 (L3_READ_L3BA...
Characterization ALUD FLT16 Instructions Executed (EU...
ALUO FLT32 Instructions Executed (EU...
ALUO FLT64 Instructions Executed (EU...

ALUO instructions executed by CCCS (...

PLATFORM ANALYSRS

The
The
The
The
The
The
The
The
The
The
The
The

Descrintion

number of L3 bank 0 read requests

number of L3 bank 1 read requests

number of L3 bank 10 read requests

number of L3 bank 11 read requests

number of L3 bank 12 read requests

number of L3 bank 13 read requests

number of L3 bank 14 read requests

number of L3 bank 15 read requests

number of FLT16 instructions executed in ALUO INT64 pipeline.
number of FLT32 instructions executed in ALUO INTE4 pipeline.
number of FLT64 instructions executed in ALUO INT64 pipeline.

number of instructions executed in EU ALUO INT64 pipeline by co...

Analyze detailed GPU utilization (Intel Graphics only)

@

CPU/FPGA System GPU =]] Computing task of interest
Compute/Media Interaction Overview Rendering P &
Hotspots (preview)

(preview)

Trace FPGA programming APIs
Use AOCL Profiler

Analyze loops

Instance step

Step3 |

1

General strategy

Aggregated Characterization
at full scale

=

/ Selective Ranks Profiling \

Aggregated characterization
Offload analysis
Occupancy analysis
Memory Layout analysis

CPU and GPU hotspots identification
~ = ~ =~
N [7

GPU hotspots (compute kernels) analysis

CPU hOtSPOtS d na|V5|5 Instruction Stalls analysis
Memory Access analysis

k j \ Dynamic Instructions analysis)

intel. 122

Intel® VTune ™ Profiler Application Performance Snapshot (APS)

B I % High-level overview of application performance
our a Ication may underutiiize the
Wit VTine romerfo discome how 5 beie uakze the GrUL T e Detailed reports on MPI statistics

Legical Core Court per node
Collector type: Event-bosed sompiling driver Event-bosed counting driver

BT e T [e Primary optimization areas and next steps in
3990085, o oz analysis with deep tools — e.g. outlier analysis for

165.82 s v U R e MPI applications at scale

|
e Explore on source of imbalance
396 137.06 3.08 GHzW e Choose nodes/ranks for detailed profiling with

SP GFLOPS DP GFLOPS Average CPU Frequency
VTune
GPU Stack Utilization MPI Time OpenMP Imbalance Memory Stalls
3.84% R 19561 5% _ s 843% of Pipeline Slots . sk
XVE State of X i ke $:32:8.0f tiapsed Thne Cache Stalls L I.OW (6{0) I IECt ION ove rh ead d - 1 _3 %
MPI Imbalance 6.57% of Cydes
1;3' 2 Memory Footprint DRAM Stalls .
2 [05N woftpsed | Resdent e Scales to la rge Jo bs
offioad) N . 4435.1 M8 DRAM Bandwidth
oA Aoiviy ok it — Resident per Node Average 13.67 GB/s
- e Tested and worked on 64K ranks
L Virtual Bound 0%
mel o - e Trace size on default statistics level ~ 4Kb per rank
?PU Occu upancy \‘.flc:E__llFl‘e’jr"Nl .*: 4.47% of Remote Accesses
51 Peak Value 102871167 M
Dlsk I/O Bound H .
Vectorization .01% of Elapsed 1 Com ma nd Llne.
0.2%R Disk read

Instruction Mix

<mpi launcher> <mpi parameters> aps <app>

intel.

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/code-profiling-scenarios/mpi-code-analysis.html

Intel® VTune™ Profiler

HPC Performance

Characterization

— Memory Bound : 44.1% & of Pipeline Slots
HPC Performance Characterization ® Cache Bound 148% of Clockiicks
Analysis Configuration ~ CollectionLog = Summary Bottom-up DRAM Bound ©: 40.7% & of Clockticks
‘ ‘ DRAM Bandwidth Bound @: 39.6% & of Elapsed Time
NUMA: % of Remote Accesses : 65.0% &
. Bandwidth Utilization Histogram
Platform Diagram d
Vectorization : 99.9% & of Packed FP Operations
s EI |E| o Instruction Mix:
DRAM SOCKET 0 SOCKET 1 DRAM SP FLOPs @ 17.9% of uOps
0.2% Average Physical Core Utilization Average Physical Core Utilization 37.1% Packed @: 99.9% from SPFP
— 41.5% (9.950 out of 24) 39.0% (9.360 out of 24) — 128-bit - 99.9% K from SP FP
256-bit 0.0% from SP FP
512-bit = 0.0% from SP FP
Scalar @: 0.1% from SP FP
el DP FLOPs ©: 0.0% of uOps
27.4% Packed ©: 00% fromDPFP
Scalar @ 100.0% & from DP FP
x87 FLOPs @: 0.0% of uOps
. . - . Non-FP ©: 82.1% of uOps
. [
Effective Physical Core Utilization : 40.3% (19.329 out of 48) & FP Arth/Mem Rd Instr. Ratio ®: 0,562
Effective Logical Core Utilization ©: 39.0% (37.439 out of 96) & FP Arith/Mem Wi Instr. Ratio ©: 3.945
i i i . o1 g ;3.
Ser:l:al ﬁ:e_ (Tl:s:de ptaralletl;zglans)” 'IB'SU_US (54.6%) Top Loops/Functions with FPU Usage by CPU Time
op Serial Hotspots (outside parallel regions) This section provides information for the most time consuming loops/functions with floating point operations.
Parallgl Region Time : 6.902s (45.4%) | Function CPU Time % of FP Ops FP Ops: Packed FP Ops: Scalar Vector Instruction Set
Estimated Ideal Time @: 5.960s (39.2%)
OpenMP Potential Gain @; 0.942s (6.2%) [Loop at line 38 in _Z22Iso3dfdVerifylterationPfS_S_S_iiimmm.DIR.OMP.PARALLEL.2] 532.905s 23.3% 100.0% 0.0% SSE(128); SSE2(128) R
Top OpenMP Regions by Potential Gain [Loop at line 34 in _Z22Iso3dfdVerifylterationPfS_S_S_iiimmm.DIR.OMP.PARALLEL.2] 16.680s 2.5% 100.0% 0.0% SSE(128); SSE2(128)
This section lists OpenMP regions with the highest potential for performance improvement. The Potential Gain metric shows the elapsed time that could be saved if the region was [Loop at line 103 in WithinEpsilon] 0.460s 9.5% 0.0% 100.0% SSE(128)
assuming no runtime overhead
OpenMP Region OpenMP Potential Gain (%) OpenMP Region Time
_Z22|so3dfdVerifylterationPfS_S_S_iiimmm.DIR.OMP.PARALLEL .2$ompS$parallel:96@/home/gtaliso3dfd_omp_offload/sre/iso3dfd_verify.cpp:25:25 0.942s 6.2% 6.902s

GPU Utilization when Busy : 25.0% &

EU state
Active @: 25.0%
Stalled @: 71.9% K&
Idle 3.0%

Occupancy @: 97.9% of peak value

Offload Time: 34.1% (5.190s) of elapsed time
Compute: 84.4% (4.381s) of offload time
Data Transfer: 14.0% (0.728s) of offload time
Overhead: 1.6% (0.081s) of offload time
Top OpenMP Offload Regions

OpenMP Offload Region
Iso3dfdlteration$ompstarget$region:dve=0@/home/gta/iso3dfd_omp_offload/src/iso3dfd.cpp:50

[Outside any OpenMP Offload Region]

“N/A I applied to non-summable metrics.

Iso3dfd$omps$target$region:dve=0@/home/gta/iso3dfd_omp_offload/src/iso3dfd.cpp:332

0.808s

A starting point for performance optimization
* CPU/GPU usage, Memory efficiency, and

. . ape .
Offload Time Percentage of Elapsed Time Data Transfer Overhead GPU Utilization when Busy F I O a t I n g_ p O I n t u t I I I Z a t I O n

4.382s

28.8% 0s 0.000s 0.0% Kk
5.3% 0.728s 0.081s 0.0% K~
0.0% 25.0% K

vtune -collect hpc-performance [-knob <knobName=knobValue>] [--] <app>

intel.

14

Selective Profiling

1. Use Multiple Program Multiple Data MPI run and apply VTune Profiler profiling for the ranks of interest.

$ export VTUNE CL=vtune -collect hpc-performance -trace-mpi -result-dir my result

$ mpirun -host myhostl -ppn 8 -n 7 <app>: -n 1 SVTUNE CL -- <app> :-n 7 <app>: -n 1 $VTUNE
_CL -- <app>

2. And if you are interested in a particular rank (for example, an outlier rank defined by APS), it is recommended to
write a launch script checking the rank number and pass the script to mpirun. For example, it can look like:

#!'/bin/bash

if [$PMI_RANK == 67],; then
Rank = 67 is chosen for wvtune collection
$VITUNE CL -- <app>

else
all other ranks just run the application
<app>

fi

intel.

15

Hotspots Analysis

e Understand an application flow
e ldentify sections of code that get a lot of
execution time
e Sampling-based collection modes
e User-Mode Sampling
e Hardware Event Based Sampling
* Define a performance baseline.

* Identify the hottest function.
e ldentify algorithm issues.

* Analyze source.

Summary

(©) Elapsed Time ©: 133.634s (7]

() CPU Time @:
Total Thread Count:
Paused Time @

(v) Top Hotspots

472.871s
5
Os

Hotspots Insights

This section lists the most active functions in your application. Optimizing these
hotspot functions typically results in improving overall application performance.

Function

Module

CPU Time @

multiply1

matrix.exe

Bottom-up

472.573s

If you see significant hotspots in
the Top Hotspots list, switch to the
Bottom-up view for in-depth
analysis per function. Otherwise,
use the Caller/Callee view to track
critical paths for these hotspots.

Grouping:[Function / Call Stack

ME]

. CPU Time] .
Function / Call Stack A - - — Module Function (Full) Source File
Effective Time Spin Time | Overhead Time
__intel_avx_rep_memset el_a ep
b __printf 0.008s 0Os 0Os libc.so.6 __printf printf.c
» matrix_multiply 13.960s (D 0Os 0Os | MatrixMultiplication_icc ~ matrix_multiply MatrixMultiplicatior-

intel.

16

What’s Using All The Memory?

Memory Consumption Analysis

See What Is Allocating Memory
= Lists top memory consuming functions

" memory consumption distribution over
time.

= View source to understand cause

= Filter by time using the memory

consumption timeline
- Focus on the peak values on the Timeline pane

® |ntroduce additional overhead due to
instrumentation .

Native language support is not currently available for Windows*

® Top Memory-Consuming Functions &
This section lists the most memory-consuming functions in your application.

Function Memory Consumption Allocation/Deallocation Delta Allocations Module
create linked list 469.8 MB 0.0B 4,194,304 LinkedList gcchk
create data 402.7 MB 0.0B 1 LinkedList gcck
create_array_data 352.3 MB 352.3 MB 7 LinkedList gccl
itt_init 47.7 KB 8.3 KB 99 LinkedList gcchk
[Unknown stack frame(s)] 528.0B 528.0B 11 [Unknown]
[Others] 96.0B 96.0B 3 N/A*
*N/A is applied to non-summable metrics.

e e |y - <2< |- E—. S - — - S— Scale Markers:
Frame Rate ' Frame

nnnnnnnnnnnnnnnn

LinkedList_gcc (TID: 139538)

Thread

) 822.1M8B |
Memory Consumption: ...

Frame Rate

i Frame Rate
[Runnin: g
= Task

s Memory Consum, ption

intel.

Memory Consumption: ...

18

Optimize Memory Access
Memory Access Analysis

e Tune data structures for performance

o Attribute cache misses to data structures
(not just the code causing the miss)

e Support for custom memory allocators
e Shows average load latency in cycles
e Optimize NUMA latency & scalability

e Auto detect max system bandwidth
e Detects inter-socket bandwidth

Memory Access MemoryUsage ~ @ O3
Analysis Configuration Collection Log Summary Bottom-up Platform

(©) Elapsed Time“: 168.990s i

CPU Time @: 155.314s

® Memory Bound @: 37.5% & of Pipeline Slots
Loads: 22,954,537,452
Stores: 5,173,914,018

® LLC Miss Count@: 3,857,736,762
Average Latency (cycles) @: 99
Total Thread Count: 6
Paused Time @: Os

& Platform Diagram
o) i[m]:
DRAM SOCKET 0
1.3% Average Physical Core Utilization @ :
—

1.6% (0.563 out of 36)

NUMA: % of Remote Accesses ' : 61.3%

[3

UPI
4.0%

Average Physical Core Utilization © :
1.0% (0.364 out of 36)

NUMA: % of Remote Accesses © : 61.0%

INTELVTUNE PROFILE
A

Lo
DRAM

1.1%
>

intel. 1

Intel® VTune™ Profiler

Profile GPU Performance

= Explicit support of DPC++, DirectX, Intel® Media SDK,
OpenCL™, and OpenMP-offload software technology

= Multi-GPU systems analysis
= GPU Offload cost profiling

* CPU vs GPU boundness
* Offload overhead & host-to-device traffic, GPU compute vs data transfer

* GPU utilization and software queues per DMA packet domain

= GPU Hotspots analysis
* EU and memory efficiency metrics, GPU Occupancy limiting factors
* Memory hierarchy diagram and throughput analysis

= Source level in-kernel profiling

* Dynamic instruction count
* Basic Block execution latency

* Memory latency

O: 4 = & 1 30ms 3500ms

3530ms 3540ms 3550ms 3560ms.

OMP Primary Thread #0 (TID: 24141)

Thread

GPU Vector Engine: GPU Stack 0

GPU Computing Threads Dispatch: GP-

GPU XVE Pipelines: GPU Stack 0

GPU XVE Instructions: GPU Stack 0

i
1063747
GPU Memory Access: GPU Stack 0 53187

GPU Busy: GPU Stack 0 ‘

-
GPU PCle Uncore System
HBM LLC DRAM
Stack
x8 3
Slice
x8
Xe Core
x16
Vector Engine
Active: 476% < 3096 GB/s — 1061 GBls —
Thread Dispatcher Stalled: 51.5% &
> Idle: 0.9% -
Threads Issued: 327 456 Occupancy: 98.3% R——
X EM active: 348% SLMmiLSC >

; FPUaciive: 2442148027
Bindless Thread Dispatch < EM active: 6,589,368,343
. XMX active: 0 HET—

Fis ¥
RT Unit -

CPU

CPU core

Utilization: 19.1%

intel.

20

GPU Performance Problems

ALGORITHM @ MICROARCHITECTURE

Performance

o o == o

Addressing performance issues with dynamic analysis tools
PARALLELISM 170
e o

Characterization

Work Dlstrlbutlon ACCELERATORS PLATFORM ANALYSES
© O @ ® O

GPU GPU CPU/FPGA System Throttling Platform

° Offload Compute/Media Interaction Overview Profiler
ata transfer
m Assembly o W e | b o

[J G P U & GPU Instructions Executed by Instruction T__*
O CC U a n Cy o O Source ® Control Flow @ Send & Wait
Int32 & SP Float @ Int64 & DP Float @ Other
158 dz = ptrl[jl.pes[0] - ptrlil.pos[0] 75,002,500 B []

° Memory access 159 | dy = peri9l.pos(l] - periil.pes(1]] 12,500,000

160 dz ptr[il.pes[2] - ptr[il.pos[2] 12,500,000

Kernel inefficiencies , -

Uncore System
eDRAM <> LILC DRAM
Slice
. . .o a3 L3
* Non-scaling implementations o
& oo 437 74
Execution Unit - 24378 10.745 —
Active: 130% LI s
Stalled: 869%
Ide: 02% Untyped: 1.574 Untyped: 24.084 1
Threads lssued: 1966 | <— Typed:0.000 —— Total 30.961 —— Typed 0.714 —»
L] Occupancy:. 894% SLM: 0.000 SLM: 0.000
LN] E
CPU
CPU cors
Lhifization: 24.0%

intel. =

Work Distribution

Work distribution among computing resources

e CPU or GPU bound?

e GPU Utilization for OpenMP
regions/SYCL kernels

* EU/XVEs efficiency (Active, Stalled, Idle)

e (Offload Time characterization
* Compute
e Data Transfer

e Qverhead

Welcome r000gh

GPU Offload GPUOfficad ~ @ [
Analysis Configuration Collection Log Summary Graphic

GPU Topology Diagram

Use this topology diagram to examine the GPU interconnect (Xe Link) and identify stack-stacl

r001go »

Recommendations v
GPU Time, % of Elapsed time: 6.7% ‘Unknown
GPU utilization is low. Switch to the Graphics view for in-de ' 1 22?

4 ONno

XVE Array Stalled/Idle: 41.5%
GPU metrics detect some kernel issues. Use & GPTJ Comp

[

Elapsed Time : 2.495s
GPU Topology Diagram
Hottest Host Tasks

Hottest GPU Computing Tasks

Links Utilization:
— Actively utilized

Communication Bandwidth:

Incoming, GB/s
Outgoing, GB/s

[a]

GPU
Stack 1

0.900 0
1.044

This section lists the most active computing tasks running on the GPU, sarted by the Total Time. Focus on the computing tasks flagged as performance-critical.

Computing Task

|so3dfdDevice(sycl:_V1::queued, float*, float*, float*, float*, unsigned long, unsigned long, unsi
gned long, unsigned long, unsigned long, unsigned long, unsigned long, unsigned int)::{lambda
()#1}::0perator()<sycl::_V1::handler>(, signed char) const::{lambda(j#1} ®
Iso3dfdDevice(sycl:_V1::queued, float™, float*, float”, float”, unsigned long, unsigned long, unsi
gned long, unsigned long, unsigned long, unsigned long, unsigned long, unsigned int)::{lambda
()#1}::operator()<sycl::_V1::handler=>(, signed char) const::{lambda()#2} &

“N/A Is applied to non-summable metrics.

vtune -collect gpu-offload [-knob <knobName=knobValue>] [--] <app>

% of Peak XVE

Total Execution SIMD XVE Threads
Ny Total - Threads

Time Time Time Width Occupancy Occupancy
0.437s 0.325s 74.3% 32 100.0% 94.1%
0.396s 0.325s 82.1% 32 100.0% 94.7%

SIMD
Utilization

100.0%

100.0%

intel.

22

Host and GPU Data Transferring

A commonly known problem of host-to-device transfer performance

e Data transfer time
e Amount of transferred data
e Transfer direction

 Execution time

CPU
Compute

vtune -collect gpu-offload [-knob <knobName=knobValue>] [--] <app>

GPU
Compute

intel.

23

Welcome

Analysis Configuration

Graphics View of GPU Offload

iso_go iso_hs

GPU Offload GpPuOffioad ~ @

Collection Log Summary Graphics Platform

INTEL VTUNE PROFILER

Grouping:| GPU Stack / GPU Computing Task / Host Call Stack

2801 s'@
GPU Stack 1 Stalled: 36.2%
- 20 Ml T ey o B o B B i S s o

GPU Stack 2 AR A e AR AR A AR R Ay aana R AR RRRRRER
GPU Stack 0 zgommn ARAARg ~anBRRRRARRRnn .~ ~ARRRRRRAA Ay ~-~n=sfARRRRERREAR

Alamsnnnnsffifnnsfl A

Elipagaananaanffiipanfifn

stack Access [mory Access fds Dispatch fector Engine |

4]

Host to GPU Memory Acces...0-1

System Memory Access: GP...0-1 . _ o _ . . B . _

& GPUStack1
&
> GPU Stack 0
(=9
(U]

CPUTime

. Total Time by Device Operation Type ¥ & Transfer Size Work Size
/
GPU Stack / GPU Computing Task / Host Call Stack § Allocation [Host-to-Device Transfer T [Frtrisb e Instance Count T Sy e T SIMD Width SVM Usage Type e e
GPU Stack 0 95.868ms 76 0B 0B 57.9% 37.00
IsoddfdDevicelcl:sycl:queued, float™, float™ float™, float™, unsigned long|| 48.220ms 38 0B 0B 512x512x 16 6dxléxl 32 57.5% 37.3
lso3dfdDevice(cl:sycliqueued, float™, float™, float™, float™, unsigned long|| 47.648ms 38 0B 0B 512x512x16 64x16x1 32 58.3% 36.8
[Outside any task]
GPU Stack 1 94.113ms 76 [0):] [0):] 52.2% 41.6!
3 - 2540 2550ms 2550 2570m 2580ms 25001 2800m 2607.479ms j= 26201 2630ms _
D : + = ms I ms 5 I ms 5 ms 'I'hread i s
8 1) I Running
4 ! i CPU Time
= B B 1961 i Spin and Overhea...
— [@ Clocktick Sample
GPU Stack 1 [1User Tasks
GPU Stack 0 = GPU Computing T...
GPU Vector Engine
GPU Stack 1 GPUStack) P — o U u| HVE Arrays .
_ _ _ | i Active
GPU Stack0 M EATE Y= = = Idle
Active: 54.0%
s Stalled
Idle: 9.9% |

GPU Computing Threa...
~~ Computing Threa...
~=~ X¥VE Threads Occu...

GPU Memory Access
Average Bandwidth, GB/...
Read
g Write

Stack-to-stack Access
Average Bandwidth, GB/...
Incoming
g Outgoing
Host to GPU Memory ...
Average Bandwidth, GB/...
Read

I[N IS— B

24

Graphics View of GPU Offload

Welcome <

Platform

O: o == o

AMIMex ammec - Farall 2
GPU Armresc amrexc-Parall X

amr_wirhd Elp*tlj[) 3)
1 zECnm zECm - zEC-ummEnd zEEumnm zeﬂmmndﬁje Ieﬂmm

Eaa.. =

Thread |uting Queue

intel.

25

Achieving High XVE Threads Occupancy

Occupancy analysis helps identifying problems with work mapping

Detecting workgroups by global and local sizes

Defining sub-groups by vector sizes or SIMD Width

Specifying SLM size
Barriers usage
Tiny/huge kernels

scheduling issues

() Hottest GPU Computing Tasks with Low Occupancy 'k

() Occupancy : 80.4% & Tk
|dentify too large or too small computing tasks with low occupancy that make the EU array idle while waiting for the scheduler. Note that frequent SLM accesses and barriers may
affect the maximum possible occupancy.

This section lists the most active computing tasks running on the GPU with a low Qcey

Computing Task Total Time Global Size Local Siz
kernel_ocl_path_trace_shadow_blocked_dl 32.492s 128 % 185 64
kernel_ocl_path_trace_shader_sort 21.426s 128 x 185 64

kermel_ocl_path_trace_shader_ewval 17.506s 128 x 185 64

"WAA is apoliad o RON-SUTMalie malics

vtune -collect gpu-hotspots [-knob <knobName=knobValue>] [--] <app>

Peak Occupancy,’
76.2%

-)

a []
Peak occupancy you can achieve with existing
computing task launch configuration.

» T76.2% Bound by SLM
+ 100.0% Bound by insuffclent waork size

® The performance is limited by low occupancy.
Consider reducing the usage of SLM.

supancy Oceupancy

100.0% 88.6% K
T6.2% & 60.5% K
100.0% 78.1% K
73.2% &

intel. =

Kernel code optimizations

Advanced code optimizations on kernel level

* Are FPUs and EM pipelines fully utilized?

* How are the systolic instructions used in Al

application?

DO: dp = 0

162740ms
T B

1627

60ms.

Thread

python3 9 (TID: 42139)

python3 9 (TID: 41758)

* Instructions counting profiles

162780ms 162800ms 162820ms 162840ms

GPU Stack 1

GPU Stack 0

ector Engine

GPU Computing Threads Dispatch: GPU ...

GPU Stack 1 820.924”]

GPU Stack 0 820924

mory Access

GPU XVE Pipelines: GPU Stack 0

GPU XVE Instructions: GPU Stack 0

GPU Stack 1 3860573 |

GPU Stack 0 3860573 |

and Misses

D1 Rocw 201 Stark N

* FPU and XMX pipeline Utilization

) [Running

[C1User Tasks
' Computing Task

GPU Vector Engine
XVE Arrays
e Active
ha [dle
i Stalled

GPU Computing Thr. .

~~ Computing Threa

~~ XVE Threads Oc...

GPU Memory Access

Average Bandwidth, GB..

. Read
i Write

GPU XVE Pipelines: .

~~FPU and EM Utili..
~~FPU and XMX Uti..

intel.

27

oneDNN with Intel® XMX

GEMM with different levels of precisions

Platform

D : + - r I_‘- IUSI 1 1 1 1'S 1 1 1 1 2|s 1 1 1 36 | Thread V|
kS [Running
LE)
E| matmul-perf-cpp (TID: 1971 1. S — —— - [User Tasks

= Computing Task
GPU Vector Engine: GPU 0

GPU Vector Engine: GPU 0 XVE Arrays
s Active
s Idle
GPU Computing Threads Dispa... i Stalled
254223 | GPU Computing Threads Disp...
~~ Computing Threads Started...
GPU Memory Access: GP. 169485 | ~~ XVE Threads Occupancy
24.743

GPU Memory Access: GPU 0

Average Bandwidth, GB/sec
s Read
s Write

GPU XVE Pipelines: GPU 0

GPU XVE Instructions: GPU 0 GPU XVE Pipelines: GPU 0

~~FPU and EM Utilization
~~FPU and XMX Utilization

1971.390 |

GPU L3 Cache Bandwid...1314.260 |

GPU XVE Instructions: GPU 0
657.130 |

(] ~~ XVE Send pipeline active
[~~ XVE Branch pipeline active
~~ XVE FPU pipeline active
~~ XVE EM pipeline active

~ XVE XMX pipeline active

GPU Busy: GPU 0

GPU Frequency: GPU 0

FP32 FP16 BF16 INT8 1

Memory Access

* Global memory access penalty

e Cache memory resource limit

problems

* Which code is responsible for latency?

e Per Basic Block and latencies per individual

[]
Mty Hsrachy Diagia Pl

D: s = 2250ms 2300ms 2350ms 2400ms
T] [Running
2 iso3dfd.exe (TID: 19827) S 111111/ - . [] User Tasks
= = Computing Task
- GPU Vector Engine
% GPU Stack 1 XVE Arrays
5 i Active
8 GPU Stack 0 i Idle
= i Stalled
2| GPU Stack 1
® GPU Computing Thr.
(=} % ~~ Computing Threa.
3 GPU Stack 0 G P
2] il ~~ XVE Threads Oc.
o 780.513
g GPU Stack 1 GPU Memory Access
::_ 0 Average Bandwidth, GB
£ GPU Stack0 - 1 Read
g 390.257 s Write

_‘b

i

322.6 GBls —

HBM

<«—— 510.6 GB/s — 166.0 GB/s —=

l <—— L3 Read: 1,717.6 GB/s — L3 Write:

Grouping:‘ GPU Stack / Source Computing Task

VK[

GPU Memory Bandwidth, GB/sec

GPU Stack / Source Computing Task A L3 Read Bandwidth, GB/sec L3 Write Bandwidth, GB/sec Read Wit GPU Barriers GPU Atomics
ea ite
I [Outside any task] 0.025 0.013 0.010 0.010 0 0
Iso3dfdDevice(sycl::_V1:queue&, float", float*, float”, float®, unsigned long, unsigne 1717.617 322.564 510.562 166.048 0 0
Iso3dfdDevice(sycl::_V1:queued, float”, float”, float”, float®, unsigned long, unsigne| 1708.403 320.816 507.493 164.911 0 0

intel.

29

Source level in-kernel profiling

vtune -collect gpu-hotspots —knob profiling-mode=source-analysis -knob source-analysis=bb-latency/mem-latency -knob computing-task-of-

interest="pattern*#start#step#end [--] <app>

GPU Compute/Media Hotspots (preview) @

Analysis Configuration

Collection Log Summary Graphics iso3dfd_kernels.cpp

GPU Compute/Media Hotspots (preview) @ 1

Analysis Configuration

Collection Log Summary Graphics @ iso3dfd_kernels.cpp

Sourc... A ‘ Source W Estimated GPU Cycles | So... A ‘ Source # Average Latency, Cycles »!| Estimated GPU Cycles
428 for (auto iter = 0; iter < kHalflength; iter++) | 431

429 front[iter] = front[iter + 1]; 432 // Only one new data-point read from global memory

430 } 433 // in z-dimension (depth)

431 434 front [kHalfLength] = prev[gid + kHalflLength * nxyl; 856 1.061e+10 D
432 // only one new data-point read from global memory 435

433 // in z-dimensicn (depth) 436 // Stencil code to update grid point at position given by global id (gid)

434 front [kHalflLength] = prev[gid + kHalfLength * nxyl; 8.573e+8 | 437 float value = c[0] * front[0];

435 438 #pragma unroll (kHalflLength)

436 // stencil code to update grid point at position given by global id (gid) 439 for (auto iter = 1; iter <= kHalflength; iter++) |

437 float walus = c[0] * front[0]; 3.429e+8 | 440 value += cliter] * (front[iter] + back[iter - 1] + prev[gid + iter] + 214 7.963¢+9 @D

438 #pragma unroll (kHalflength) 441 previgid - iter] + prev[gid + iter * nx] + 186 2.302e+10 (D
439 for (autc iter = 1; iter <= kHalfLength; iter++) { 442 prev[gid - iter * nx]); 196 1.943e+10 D
440 value += cliter] * (front[iter] + back[iter - 1] + prev[gid + iter] + 1.367e+10 D 443 }

441 prev[gid - iter] + prev[gid + iter * nx] + 1.097e+10 D 444

442 prev[gid - iter * nx]); 2.358e+10 (D 445 next[gid] = 2.0f * front[0] - next[gid] + value * vel[gid]; 875 2.169e+10 (D
443 } 446

444 447 gid += nxy;

445 next[gid] = 2.0f * front[0] - next[gid] + value * wvel[gid]; 1.929e+9 0 448 begin_z++;

446 449 H

447 gid += nxy; 450 }

448 begin_ z++; 3.429+8 | 451

449 452 Iad

450 } 453 * Host-side SYCL Code

451 . 454 *

452 /= Baslc Block L"tency 455 * Driver function for ISO3DFD SYCL code Memory Latency

453 * Host-side SYCL Code 456 * Uses ptr_next and ptr_prev as ping-pong buffers to achieve

454 - 457 * accelerated wave propogation

455 * Driver function for ISO3DFD SYCL code 458 *

456 * Uses ptr_next and ptr_prev as ping-pong buffers to achieve 459 * This function uses SYCL buffers to facilitate host to device

457 * accelerated wave propogation 460 * puffer copies

— —

intel.

30

HW-Assisted Stall Sampling

= Provides detailed breakdown of
stalls and reasons

= HW-assisted Stall Sampling
technology designed for Intel®
Data Center GPU Max Series (code-
named Ponte Vecchio or PVC)

= Capabilities similar to instruction
execution efficiency
characterization of
NVIDIA® Nsight™ Compute

vtune -collect gpu-hotspots —knob profiling-mode=source-analysis -knob source-

analysis=stall-sampling [--] <app>

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

29
30
31
32
33
34

__kernel void spmv_7jds naive(_ global float *ds

__global int *d index,
__global float *x vec, cof
__constant int *Jjds ptr if

__constant int *sh zent if
int ix = get gleobal id(0);

if (ix < dim) {
float sum = 0.0f%;
// 32 is warp size

int bound=sh zcnt int[ixz/32];

for (int k=0;k<bound;k++)
{
int j = jds ptr intlk] + ix;

int in = d index[]j];

float d = d dataljl;

float t = x vec[in];

I sum += d*t;
}

dst wvector[d perm[ix]] = sum;

Most stalling line

0.1%

0.0%

0.1% |
1.5% |

4.5% |
14.8% @Bl

0.6% |

42.7%

33.1% N

1.8% |

0.0%

intel. =

High-Level Stall Sampling (xe-core)

» Sample all X® Vector
Engines(XVE) statistically, one by
one

* Uses sampling interval large
enough to make data manageable

* Small enough to be representative
* No assumption that all X® Vector
Engine are doing the same work
* Record both
e Stall
® Active
Idle (Ignore)

Toate | weang

Idle No threads are loaded on the XVE. Do nothing.
Active At least one pipeline is dispatching an instruction on the sampled cycle

One or more threads are loaded on the EU, but no instruction is being

SLEL dispatched to any pipeline

intel. =

Welcome <

Memory Hierarchy Diagram

o
% |

Grouping:[Computing Task / Function / Call Stack v H X || Q
Stall Count by Stall Type ¥
Dist or Acc

Synchronization Instruction Fetch

»GPUActive

!
/
]

S 2 G 0. GEEES 1.1% G 00% 57% GEEED 46.1% G 10.7% G 1.7%
S 23 G 0. GEES 1.1% GRS 00% 5.7% G 46.1% G 10.7% GEE 1.7%

) 10.0% | 10.0% 0.2% @ 0.0% 0.0% 120.8% (D - 0.0% 10.0%
[] _0.0% | _ 0.0% 0.2% B 0.0% _ 0.0% __20.8%] | 0.0% _ ___0.0%
10.0% [0.0% 0.2% = 0.0% 0.0% 120.8%] . 0.0% 1 0.0%
tctively executing in | Stalled Stalled due to branch Stalled due to talled due to| Stalled due to Stalled due to talled due to Stalled due to an
t least one pipeline | Dueto XVE pipeline memory internal pipeline memory ync operation instruction fetch
other ependency dependency dependency or operation
reasons r internal internal EU
pipeline pipeline
ependency dependency
or send

intel. =

Source Analysis view of Stall Sampling

Welcome

Assembly | 11 = | &F

3_GPU_linear.cpp =

L

 Stall Count by Stall Type

SIS A Source
Line Active Other | Control Pipe Send | Dist or Acc SBID Synchroniza.... | Instruction Fetch | |
42 sets to indices to exclude HALO
43 nz * n3; 2,748 | 27| |0 14070 0 41 0 0 0
44 dx[0] + kHalfLength; 484 | 0 0 120 | 0 5| 0 QI m
45 Hx[1] + kHalfLength; 524 | 2 0 125 | 0 1 0 0
46 Ax[2] + kHalflength;
44 - - 3 _GPU_linear.cpp ~
48 te linear index for each cell
49 i * n2n3 + 9 * n3 + k; 5,867 @ 79 | 0 32228 |0 198 @ 0 0 “| = 4% & de e Assembly grouping:| Address
:(: — S]L_’::,rge i o . W Stall Count by Stall Type e P }‘-Stall Count by Stall Type
pl Pipe Send | Distor Acc SBID Syn Pipe Send Dist or Acc SBID
52 B = prev_acc[idx] * coeff acc[0]; 2,323 | 30| 0 844 | 0 23| 0 a2 CEEL 5 aices oie 0x960 |58 shl (16|M16) r1l4.0
53 43 Nz * n3; 14071 0 41| 0 0 0x968 |58 send.ugm (32|MO0) ri] 0 37 0
54 = 1; x <= kHalfLength; x++) { 0 Gx[0] + Walflengtn; 120 0 5 0 0 0x978 |58 add (16|M0) rlls.o0<]
55 2180 9| |d el jo 25 0 45 1x[1] + kalfLength; 125/ 0 1 0 0 0x980 |58 add (161M1€) r120.0
56 E_acc[x] * (prev_acc[idx + x] + prev_ad| 10,713 @ 2421 -0 30489 O 943 - 6,757 @B 46 k(2] + kHalflength; 0x988 |58 send.ugm (32|MO) rl 0 154 0
idx + x * 03] _+ prevad 38436 12059 |0 20038 |0 |1457 23052 OfpE 998 56 ada (321M0) accy.0<] 0 0 57
58 prev_acclidx + x * n2n3] + prev ad 24,060 (MM @ 6,599 @M 0 11,350 @ O 824 @ 13,521 T e s 56 add (32|M0) acc0.0<]
> 49 {=nn3+dcn3+ky | 3222@ |0 198 0 0 0 ' '
60 dx] = 2.0f * prev_acclidx] - next acclidx] + 1,498 | 260] 0 174 | 0 289 @ 9,676 B 50
61 value * vel acc[idx]; 373 | 75989 |0 T 0 58 | 0 51 B walues tor each ool 1 32 Sele
62 svice cods 52 = = prev_acclidx] * ¢ 844 | 0 23| 0 0 sync.nop null {Compd
63 53 add (32(M0) r35.0<1
5 54 = 1; x <= kHalfLengt} W) mul (11MO) z@
i B . 55 "3 |o 23| 0 0
BN Bl BT £ acclx] = (prev_acc[| 3048 @ |0 %43 @l 6757 @@ 0
|57 prev_acc[{ 20,038 @M 0 1,457 - 23,052 (M 0
58 prev_acc[{ | 11,350 @ 0 824 @M 13,521 @ O
59
60 ix] = 2.0f * prev_acc 174 | 0 280@ 9676 @ O i) el
61 value * vel] 7 0 58 | 0 0 add (32|M0) r49.0<1
62 device code sync.nop null {Compj
63 add (32|M0) acc2.0<]
64 L) ey MR e
65

GPU Roofline Analysis

kernels memory
bound or compute

SLM GB/s
Find the minimum of all memory subsystems

o)
Shortest distance == main bottleneck

(Shortest distance == max saturation (utilization) observed)
(Shortest distance == max effective bandwidth/throughput observed)

bound?

H intel ADV'SOR E Perspective: GPU Roofline Insights ~ aupancy

ita Transfer 2 Recommendatio X

GPU Roofline Arithmetic intensity (Flop/Byte)
h k I Y FLOAT, CARM; L3; HBM ~ | A Guidance ~ o)
Com pare the kernels F o et B i ROOFLINE GUIDANCE A
A5 i d':h, [gz
@] 9920327 9 peants e 2 Thiskernel is bounded_hy HBM Bandwissh,
SN &
& 700 = ’_,,,—/ Improve cache locality. For example, optimize cache accesses
i+ e by implementing cache blocking technique.
capabilities of the a e k
S = ni32 Vector Add Peak
G P U & 400 /_/"/ 8 .0
a _— (] .Tir'; ;.f i
. s
Memory Level - -
7149
i - 100 4= ® e o =
Roofline oo 2
. CARM HBM || L3
unamb|guous _?8.791GB[H68377’GB_’68271GB
H r INTOP/Byle (Arithmetic Intensity
bottleneck detection | - |
= = 0.31
FLOP/Byte (Arithmetic Intensity)
! L a ! ! : ! MEMORY METRICS ~
0.042 0.07 0.1 0.4 07 0.95
Self Elapsed Time: 0.074 s Imnarts
GPU Kernels A~ X
GPU Compute Performance > Work Size « Data Transferred > Kernel Details 3
Kernel ¥ Elapsed Time Performance Issues - = Kernel Type 5
FLOAT Operations INT Operations Global Local Total Size Total Time Average Time SIMD Width
i 6.645 GOp 20.905 GOp
SYCLStream<double>:-triad(void)::{lambda(sycl::_V1:handler&# 0074s 385 1024 Compute Os 0.001s 32
89.798 GOp/s Al 0.097 282487 GOp/s Al 0.306
. 3.329 GOp 17.428 GOp
SYCLStream<double>:mul(void)::{lambda(sycl::_V1:handler&)#1 0.045s 335.. 1024 Compute Os 0.000s 32
TATA0 r2Mnle Al N Nnos 204 49K Maic AN AAD

intel. =

GPU Roofline Analysis

ROOFLINE MT
DP Vector MAD Peak- 1.78e+4 GFLOP
10000

S40745

1000

100

FLOP/Byle {Arthmetic Intensity)
T

01 1 10

This application is bounded by HBM Bandwidth: 844,67 ©69% of 1215.09 GB/sec W

ROOFLINE FLOAT RSN
1.00e+5 7| @ Int32 Vector Add Peak: 1.93e+4 GINTOPR,
1000 E
100 - 3
10
1
0.1 21 G2
0.01 Bl
0.001
0.0001 g Ba INTOP/Byle {Arithmetic Intensity)
T T T T T T T T T T
1.00e-7 1.00e-3 0.0001 0.001 0.01 0.1 1 10 100
This application is bounded by HEM Bandwidth: 844.67 ©69% of 1215.09 GB/sec A4

build 989892

B intel ADVISO

Program Metrics

10.03s

Program Elap=sed Time

B cru
&FLOPS 65.88
GFLOP- 20.05 FP Al (HBM): 0.08

2 Stacks Active' 0.0%

OP/S and Bandwidth
8| cFu

ROOFLINE
1.00e+5

1000
100
10

1

0.1
0.01
0.001
0.0001

SAQINID

Perspective: GPU Roofline Insights ~

GINToPs: 298.59

'
GINTOP: 00.22

0.30s
GPU Time

NT Al (HBM): 0.35

HEmE 844.67 GB/s

———
HEM Traffic: 267.00 GB

XVE Threading Occupancy: 59.2%

FLOAT

Int32 Viector Add Peak: 1.93e+4 GINTOP;

INTOP/Byle {Anthmetic Intensity)
T T T

T
1.00e-7

This application is bounded by HBM Bandwidth:

Top Hotspots

T T
1.00e-5 0.0001

| cru
Kernel Elapsed Ti... GFLOPS
SYCLStrea . 0.08s 42.138
SYCLStrea... 0.07s 50.793
sycl: V1. 0.07s 102.107
SYCLStrea . 0.04s 74718
SYCLStrea... 0.04s 0
Platform Information
Performance Characteristics
| o K<TRNIES
XVE Array Active: 8.0%
m XVE Array Stalled: 69.9%
= XVE Array Idle: 22.1%

T T T
0.001 0.01 0.1 1 10 100

844,67 69% of 1215.09 GB/sec W

GINTOPS ... Global/lLo... Active/Sta...
265.414 335544320 S.8/796/M115
I282.48? 335544320 Tm
l211.759 524288/1024 51/56.8/38.1
I391 125 33554432/ ‘IW
I437.821 335544320 Sm

Average GPU Vector Engine Utilization: 8.0%
Incoming GTI Bandwidth Bound: 35.2%
Qutgoing GTI Bandwidth Bound: 17.8%

0.02s

Data Transfer Time

= el

aFLors 0.02

GFLOP: 0.20

Thread Count: 1

ROOFLINE

Function Call §...

lloopin _intel ...
[loop in piEnque

[loop in funci@d. ..
[loop in funci@d. ..

[loop in Ilvm:Ba. ..

Collection Information

Total CPU Time

Self Elapsed Ti...

0.08s
0.02s
0.01=
0.01=
0.01s

= GPU Roofline Regions « Source View

Pr
Application: sycl_1

9.73s
CPU Time
cintors: 0.02
FPAL 0.06 GINTOP: 0.21 INT Al: 0.07
T
No Data Available
Self GFLOPS Self GINTOPS ...

(0.15729049530. ..
0.00056129438

Time in @ Vectorized Loops

Time in Scalar Code

3.58s 100%
0.46s 13%
3.12s 87%

[IR 18— I

36

GPU Roofline in Intel® Advisor

15t method: Run the shortcut command, simple 2"d method: Run the analyses separately, compatible with MPI,
more flexible

$ advisor —--collect=roofline —--profile-gpu -- $ advisor —--collect=survey —--profile-gpu —--project-dir

project-dir ./advi results -- <app-with- ./advi results -- <app-with-parameters>

parameters> $ advisor —-collect=tripcounts —--flop —--profile-gpu -
- project-dir ./advi results -- <app-with-parameters>

e Add —target-gpu option on mutli-gpu systems
$ advisor --collect=roofline —--profile-gpu —--project-dir ./advi results --target-gpu 0:77:0.0 -- <app-
with-parameters>

* View results in Intel® Advisor GUI or generate an HTML report

o HTML GPU Roofline chart
$ advisor --report roofline —-gpu —-project-dir ./advisor dir --report-output=./roofline.html

o interactive HTML report
$ advisor --report all --project-dir ./advisor dir -report-output=./roofline report.html

intel.

37

Intel.

	Profiling Large-Scale Heterogeneous Applications with Intel® VTune™ Profiler
	Agenda
	Optimize Performance�Intel® VTune™ Profiler
	Rich Set of Profiling Capabilities�Intel® VTune™ Profiler
	What’s New in Intel® VTune™ Profiler�
	Slide Number 6
	High Bandwidth Memory (HBM) Utilization�Intel® VTune™ Profiler
	Get Visibility into Xe Link Cross-card Traffic�Intel® VTune™ Profiler
	Access Intel® VTune™ Profiler via web browser
	Command Line Interface�Automate analysis
	Custom Analysis with VTune Profiler
	General strategy
	Intel® VTune™ Profiler Application Performance Snapshot (APS)
	Intel® VTune™ Profiler�HPC Performance Characterization
	Selective Profiling
	Hotspots Analysis
	What’s Using All The Memory?�Memory Consumption Analysis
	Optimize Memory Access�Memory Access Analysis
	Intel® VTune™ Profiler�Profile GPU Performance
	GPU Performance Problems
	Work Distribution
	Host and GPU Data Transferring
	Graphics View of GPU Offload
	Graphics View of GPU Offload
	Achieving High XVE Threads Occupancy
	Kernel code optimizations
	oneDNN with Intel® XMX
	Slide Number 29
	Source level in-kernel profiling�

	HW-Assisted Stall Sampling
	High-Level Stall Sampling (Xe-core)
	Slide Number 33
	Source Analysis view of Stall Sampling
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38

