Profiling Large-Scale Heterogeneous Applications with Intel[®] VTune[™] Profiler

Xiao Zhu, Rupak Roy- Technical Consulting Engineer (Intel Corporation)

Agenda

- VTune Profiling Capabilities
- Latest Features in Vtune
- Deep Dive into VTune Features
 - CPU Profiling
 - GPU Profiling
- GPU Roofline

Optimize Performance

Intel[®] VTune[™] Profiler

Get the Right Data to Find Bottlenecks

- A suite of profiling for CPU, GPU, FPGA,, memory, cache, storage, offload, power...
- Application or system-wide analysis
- DPC++, C, C++, Fortran, Python*, Go*, Java*, or a mix
- Linux, Windows, FreeBSD, Android, Yocto and more
- Containers and VMs

Analyze Data Faster

- Collect data HW/SW sampling and tracing w/o recompilation
- See results on your source, in architecture diagrams, as a histogram, on a timeline...
- Filter and organize data to find answers

Work Your Way

- User interface or command line
- Profile locally and remotely

Rich Set of Profiling Capabilities Intel® VTune™ Profiler

Algorithm Optimization

- ✓ Hotspots
- ✓ Anomaly Detection
- $\checkmark\,$ Memory Consumption

Parallelism

✓ Threading

✓ HPC Performance Characterization

μPipe

This diagram represents inefficiencies in CPU usage. Treat it as a pipe with an output flow

equal to the "pipe efficiency" ratio: (Actual Instructions Retired)/(Maximum Possible Instruction Retired). If there are pipeline stalls decreasing the pipe efficiency, the pipe shape gets more narrow.

✓ Microarchitecture Exploration

✓ Memory Access

Microarch.&Memory Bottlenecks

The metric value is high. This can indicate that th

significant fraction of execution pipeline slots could be stalled due to demand memory load a stores. Use Memory Access analysis to have the metric breakdown I memory bierarchy, memory bandwidth information, correlatior memory objects.

Accelerators / xPU

- ✓ GPU Offload
- ✓ GPU Compute / Media Hotspots
- ✓ CPU/FPGA Interaction

Multi-Node

✓ Application Performance Snapshot

4

What's New in Intel[®] VTune[™] Profiler

Profile your applications running on latest Intel HW

- 4th generation Intel[®] Xeon[®] Scalable processors (formerly code named Sapphire Rapids)
- Intel[®] Xeon[®] Max Series CPUs (code named Sapphire Rapids HBM)
- 13th generation Intel[®] Core[™] processors (formerly code named Raptor Lake),
- Intel[®] Data Center GPU Max Series (formerly code named Ponte Vecchio).

Accelerate GPU code

- Get visibility into XeLink cross-card traffic for issues such as stack-to-stack traffic, throughput and bandwidth bottlenecks. Identify imbalances of traffic between CPU and GPU through a GPU topology diagram.
- Identify the reasons of the stalls in Xe Vector Engines (XVEs), formerly known as Execution Units (EUs). Use this information to better understand and resolve the stalls in your busiest computing tasks.
- Profile applications executing on multiple GPUs.

Optimize Python code

Identify and optimize performance hotspots of Python code, now supporting Python 3.9.*.

Decide memory mode for your workload

 Identify performance gained from high bandwidth memory (HBM). Run Intel[®] VTune Profiler for each mode (HBM only, Flat, Cache) to identify which profile offers the best performance.

⊙ GPU Topology Diagram

Use this topology diagram to examine the GPU interconnect (Xe Link) and identify stack-stack, GPU-socket, and GPU-GPU bandwidths. Hover over a GPU stack to see bandwidth metrics.

Cross-card, stack-to-stack, and card-to-socket bandwidth are presented on GPU Topology Diagram.

The histogram shows the distribution of the elapsed time per maximum bandwidth utilization among all packages.

Only x86 CPU with High Bandwidth Memory

Memory modes

-

Willout II with

attended blondede

in the second

High Bandwidth Memory (HBM) Utilization

Intel[®] VTune[™] Profiler

Understand HBM memory usage

- Is the application performance affected by HBM utilization?
- How is the bandwidth distributed between DRAM vs. HBM?

Identify memory mode for your workload

- Does your workload benefit from HBM?
 - Profile your workload for each mode HBM, flat or cache

Bandwidth Utilization Histogram

Explore bandwidth utilization over time using the histogram and identify memory objects or functions with maximum contribution to the high bandwidth utilizati

dwidth Domain: HBM, GB/sec Bandwidth Utilization Histogram

This insignates the valid time the bandwidth was utilized by certain value. Use sliders at the bottom of the histogram to define thresholds for Low, Medium and High utilization levels. You can use these bandwidth utilization types in the Bottom-up view to group data and see all functions executed during a particular utilization type. To learn bandwidth capabilities, refer to your system specifications or run appropriate benchmarks to measure them; for example, Intel Memory Latero; Thecker can provide maximum achivabilities DRAM and Interconce tandwidth.

The histogram shows the distribution of the elapsed time per maximum bandwidth utilization among all packages.

N	lemory Access	Memo	y Usage 👻 💿 [[1]
A	nalysis Configuration	Collecti	on Log Summary Bottom-up Platform
	Ø: =	K. F.	25 25 45 65 85 105 125 145 105 185 205
dwidth	package_0	227	
M Ban	package_1	227	
ŘΓ			
dwidth	package_1	748.976	
3M Ban	package_0	748.976	
Ξſ			
g. (%)	package_1	100.0%	
Outgoin	package_0	100.0%	
~~~			

The workload performance in various HBM modes can be evaluated by running the collection in each mode and analyzing the bandwidth as described above.

### Get Visibility into Xe Link Cross-card Traffic Intel[®] VTune[™] Profiler

### Identify bottlenecks related to Xe Link

- Understand cross-card memory transfers and Xe Link utilization
- Visualize GPU Topology of the system and estimate bandwidth of each link, stack or card.
- See usage of Xe Link and correlate with code execution.

#### GPU Topology Diagram Use this topology diagram to examine the GPU interconnect (Xe Link) and identify stack-stack. GPU-socket, and GPU-GPU bandwidths. Hover over a GPU stack to see bandwidth metric Links Utilization Communication Bandwidth Actively utilized Incoming, GB/s Outgoing, GB/s Not utilized 0 0 0:108:0.0 1:24:0.0 0.007 0.007 Socket 0 0.191 2.684 0.071 0.012 0 0 1:108:0.0 GPU 0.007 Stack 0 0.007 0.007 0.007 0 0 0:66:0.0 1:66:0.0

Cross-card, stack-to-stack, and card-to-socket bandwidth are presented on GPU Topology Diagram.



Timeline view can show bandwidth usage of Xe Link over time.

# Access Intel[®] VTune[™] Profiler via web browser

### Interactive analysis

- 1) Configure SSH to a remote Linux* target
- 2) Choose and run analysis with the UI

### Command line analysis

1) Run command line remotely on Linux* target



# **Command Line Interface**

Automate analysis

- Set up the environment variables:
  - -Windows: <install-dir>\env\vars.bat
  - Linux: <install-dir>/env/vars.sh

Help: vtune –help vtune –help collect hotspots

Use UI to setup 1) Configure analysis in UI

- 2) Press "Command Line..." button
- 3) Copy & paste command



vtune -collect hpc-performance [-knob <knobName=knobValue>] [--] <app> mpiexec –n 12 vtune –c gpu-hotspots –r gpuhs mpi –trace-mpi [-knob

<knobName=knobValue>] [--] <app>

### Custom Analysis with VTune Profiler



### General strategy



### Intel[®] VTune[™] Profiler Application Performance Snapshot (APS)

#### **Application Performance Snapshot**



- High-level **overview** of application performance
  - Detailed reports on MPI statistics
- Primary optimization areas and next steps in analysis with deep tools – e.g. outlier analysis for MPI applications at scale
  - Explore on source of imbalance
  - Choose nodes/ranks for <u>detailed profiling</u> with VTune
- Low collection overhead 1-3%*
- Scales to large jobs
  - Tested and worked on 64K ranks
  - Trace size on default statistics level ~ 4Kb per rank
- Command Line:

<mpi launcher> <mpi parameters> aps <app>

### Intel[®] VTune[™] Profiler HPC Performance Characterization



### **Selective Profiling**

1. Use Multiple Program Multiple Data MPI run and apply VTune Profiler profiling for the ranks of interest.

\$ export VTUNE_CL=vtune -collect hpc-performance -trace-mpi -result-dir my_result
\$ mpirun -host myhost1 -ppn 8 -n 7 <app>: -n 1 \$VTUNE_CL -- <app> :-n 7 <app>: -n 1 \$VTUNE_CL -- <app>

2. And if you are interested in a particular rank (for example, an outlier rank defined by APS), it is recommended to write a launch script checking the rank number and pass the script to mpirun. For example, it can look like:

#### #!/bin/bash

```
if [ $PMI_RANK == 67 ]; then
    # Rank = 67 is chosen for vtune collection
    $VTUNE_CL -- <app>
```

#### else

```
# all other ranks just run the application
<app>
```

fi

# Hotspots Analysis

- Understand an application flow
- Identify sections of code that get a lot of execution time
- Sampling-based collection modes
  - User-Mode Sampling
  - Hardware Event Based Sampling
- Define a performance baseline.
- Identify the hottest function.
- Identify algorithm issues.
- Analyze source.



#### Top Hotspots $(\checkmark)$

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function	Module	CPU Time ^②
multiply1	matrix.exe	472.573s

Hotspots 💿 🛍					INIEL	VIUNE PRUFILER	
Analysis Configuration Collect	tion Log Summary B	ottom-up Ca	aller/Callee To	op-down Tree Flame Gra	aph Platform		
Grouping: Function / Call Stack							
Eurotion / Call Stack	CP	U Time	*	Modulo	Euroction (Eull)	Source File	
	Effective Time	Spin Time	Overhead Time	Module	r unction (r un)	Source The	
intel_avx_rep_memset	0.012s	0s	0s	libintlc.so.5	intel_avx_rep_memset		
printf	0.008s	0s	0s	libc.so.6	printf	printf.c	
matrix_multiply	13.960s	0s	0s	MatrixMultiplication_icc	matrix_multiply	MatrixMultiplication	

# What's Using All The Memory?

Memory Consumption Analysis

### See What Is Allocating Memory

- Lists top memory consuming functions
- memory consumption distribution over time.
- View source to understand cause
- Filter by time using the memory consumption timeline
  - Focus on the peak values on the Timeline pane
- Introduce additional overhead due to instrumentation .

#### ⊙ Top Memory-Consuming Functions №

This section lists the most memory-consuming functions in your application.

Function	Memory Consumption	Allocation/Deallocation Delta	Allocations	Module
create_linked_list	469.8 MB	0.0 B	4,194,304	LinkedList_gcc 🏼
create_data	402.7 MB	0.0 B	1	LinkedList_gcc 🏼
create_array_data	352.3 MB	352.3 MB	7	LinkedList_gcc 🎙
itt_init	47.7 KB	8.3 KB	99	LinkedList_gcc 🎙
[Unknown stack frame(s)]	528.0 B	528.0 B	11	[Unknown]
[Others]	96.0 B	96.0 B	3	N/A*

*N/A is applied to non-summable metrics.



### **Optimize Memory Access** Memory Access Analysis

- Tune data structures for performance
  - Attribute cache misses to data structures (not just the code causing the miss)
  - Support for custom memory allocators
  - Shows average load latency in cycles
- Optimize NUMA latency & scalability
  - Auto detect max system bandwidth
  - Detects inter-socket bandwidth

Memory Access Memory	Usage 🔹 🕐 🛱		INTEL VTUNE PRO
Analysis Configuration Collection	n Log Summary	Bottom-up Platform	
Selapsed Time [®] : 16	8.990s 🐚		
CPU Time ⁽²⁾ :	155.314s		
Memory Bound [®] :	37.5%	of Pipeline Slots	
Loads:	22,954,537,452		
Stores:	5,173,914,018		
③ LLC Miss Count [®] :	3,857,736,762		
Average Latency (cycles)	?: 99		
Total Thread Count:	6		
Paused Time ?:	0s		
Ilatform Diagram			



### Intel[®] VTune[™] Profiler **Profile GPU Performance**

- Explicit support of DPC++, DirectX, Intel[®] Media SDK, OpenCL[™], and OpenMP-offload software technology
- Multi-GPU systems analysis
- GPU Offload cost profiling
  - CPU vs GPU boundness
  - Offload overhead & host-to-device traffic, GPU compute vs data transfer
  - GPU utilization and software queues per DMA packet domain
- GPU Hotspots analysis
  - EU and memory efficiency metrics, GPU Occupancy limiting factors
  - Memory hierarchy diagram and throughput analysis
- Source level in-kernel profiling
  - Dynamic instruction count
  - Basic Block execution latency
  - Memory latency



# **GPU Performance Problems**

Addressing performance issues with dynamic analysis tools

- Work Distribution
- Data transfer
- GPU occupancy
- Memory access

...

- Kernel inefficiencies
- Non-scaling implementations

Ø ALGORITHM MICROARCHITECTURE Performance Snapshot (-∕~ Ö Anomaly Microarchitecture Memory Hotspots Memory Consumption Detection Exploration Access PARALLELISM I/O6 Jî. Threading HPC Input and Output Performance Characterizatio PLATFORM ANALYSES ACCELERATORS 0  $\odot$ 0 1 ~ GPU GPU CPU/FPGA Throttling Platform System Offload Compute/Media Interaction Overview Profiler Hotspots Q Source Assembly Source Control Flow Send & Wait Int32 & SP Float 🔒 Int64 & DP Float 🔳 Other 158 dx = ptr[j].pos[0] - ptr[i].pos[0]75,002,500 159 dy = ptr[j].pos[1] - ptr[i].pos[1]12,500,000 160 12,500,000 dz = ptr[j].pos[2] - ptr[i].pos[2];



# **Work Distribution**

### Work distribution among computing resources

- CPU or GPU bound?
- GPU Utilization for OpenMP regions/SYCL kernels
- EU/XVEs efficiency (Active, Stalled, Idle)
- Offload Time characterization
  - Compute
  - Data Transfer
  - Overhead



GPU Time, % of Elapsed time: 6.7% GPU utilization is low. Switch to the Graphics view for in-de

XVE Array Stalled/Idle: 41.5% GPU metrics detect some kernel issues. Use 🌞 GPU Comp

- S Elapsed Time[®]: 2.495s
- ③ GPU Topology Diagram

#### O Hottest Host Tasks

#### Sector Secto

This section lists the most active computing tasks running on the GPU, sorted by the Total Time. Focus on the computing tasks flagged as performance-critical.

Computing Task	Total ⊚ Time	Execution ③ Time	% of	SIMD ③ Width	Peak XVE ⑦ Threads Occupancy	XVE Threads ③ Occupancy	SIMD ⑦ Utilization
Iso3dfdDevice(sycl::_V1::queue&, float*, float*, float*, float*, unsigned long, u	0.437s	0.325s	74.3%	32	100.0%	94.1%	100.0%
Iso3dfdDevice(sycl::_V1::queue&, float*, float*, float*, float*, unsigned long,	0.396s	0.325s	82.1%	32	100.0%	94.7%	100.0%

*N/A is applied to non-summable metrics.

vtune -collect gpu-offload [-knob <knobName=knobValue>] [--] <app>

#### SPU Topology Diagram

Use this topology diagram to examine the GPU interconnect (Xe Link) and identify stack-stacl



Communication Bandwidth: Incoming, GB/s Outgoing, GB/s

## Host and GPU Data Transferring

A commonly known problem of host-to-device transfer performance

- Data transfer time
- Amount of transferred data
- Transfer direction
- Execution time



vtune -collect gpu-offload [-knob <knobName=knobValue>] [--] <app>

### Graphics View of GPU Offload

Welcome × iso_go × iso_hs ×												
GPU Offload GPU Offload • ③										INTE	. VTUNE PRO	<b>JFILER</b>
Analysis Configuration Collection Log Summary Graphics Plat	form											
Grouping: GPU Stack / GPU Computing Task / Host Call Stack											<ul><li>✓ </li></ul>	Q 9,0
GPU Stack / GPU Computing Task / Host Call Stack		Total Time by Device Operati	on Type 🔻	Instance Count	Transfe	er Size 🔍	Wor	k Size	SIMD Width	SVM Usage Type	)	XVE Arra
	Allocation	n 🔋 Host-to-Device Transfer 🔋 Execu	ition 🚦 Device-to-Host Transfer	motanee oount	Host-to-Device	Device-to-Host	Global	Local		offit oblige type	Active	Stalled
▼ GPU Stack 0	95.868ms			76	08	08	510 - 510 - 14	64×16×1	22		57.9%	37.0
Iso3dfdDevice(cl.:sycl::queue&, float*, float*, float*, float*, float*, unsigned long	47.648ms			38	08	08	512 x 512 x 16	64 x 16 x 1	32		58.3%	36.8
[Outside any task]												
GPU Stack 1	94.113ms			76	0 B	0 B					52.2%	41.6
O · ∔ → 𝕐 🖉 2540ms 2550ms		2560ms 2570ms	2580ms	2590ms	2600ms	2607.479ms	ns	2620ms	2630n	ns 🛛 🗖 Th	beor	
	┉╧╧		╘╾┶┶┶┶┶┶┶┶┶┶┶	┶┷┷┷┷┷┷	╈╧┶╧┲╧┲╧┲╧		┙ ┷ <del>┙┙┙</del> ┙┷┙┙		┶┷┶┶┷┷		Running	
ir date (1): 261 ?)											CPU Time	
pineter (TIL: 19617-)										🛛 🗹 🖦	Spin and Ove	rhea
P CDLIStock1											UIOCKTICK San User Tasks	npie
											GPU Comput	ting T
										GPU	Vector Engin	ne
5 GPUStack 1			<b>∩</b>				Stack 0	~~~~~~	~~~~~	VE/	Arrays	
GPUIStack 0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Arrays 🖘 🖚				Active	
						Activ	e: 54.0%				Stalled	
26 29 GDU Stock 1 990 1 8						Idle:	9.9%		~~~~	GPL GPL	Computing T	[hrea
GPWStack 1 990.16						Stall	ed: 36.2%	~~~~			Computing T	hrea
										<b>⊘</b> ~	XVE Threads	Occu
E GPLIStack1 32.5 0										📕 📕 🛛 🗹 GPU	J Memory Acc	ess
GPU Stack 0 32.5 0										Avera	ge Bandwidth	ı, GB/
											Write	
Host to GPI Memory Acces 0.13										Stat	k-to-stack Ac	cess
System Memory Access: GP 011										Avera	ge Bandwidth	n, GB/
≥ CDI Stock1											🛛 👝 Incomin	g
											Uutgoin	g
										Hos	t to GPU Mem	ORY
CPUTime										Avera	🖉 🔤 Read	, OD/
V.FV/1008						I.					547.5	

### **Graphics View of GPU Offload**



# Achieving High XVE Threads Occupancy

### Occupancy analysis helps identifying problems with work mapping

- Detecting workgroups by global and local sizes
- Defining sub-groups by vector sizes or SIMD Width
- Specifying SLM size
- Barriers usage
- Tiny/huge kernels scheduling issues

#### 🕑 Occupancy 🛛: 80.4% 🖻 临

Identify too large or too small computing tasks with low occupancy that make the EU array idle while waiting for the scheduler. Note that frequent SLM accesses and barriers may affect the maximum possible occupancy.

Peak Occupancy.%

#### Hottest GPU Computing Tasks with Low Occupancy In

#### This section lists the most active computing tasks running on the GPU with a low Occu

Computing Task	Total Time 💿	Global Size 💿	Local Siz
kernel_ocl_path_trace_shadow_blocked_dl	32.492s	128 x 185	64
kernel_ocl_path_trace_shader_sort	21.426s	128 x 185	64
kernel_ocl_path_trace_shader_eval	17.506s	128 x 185	64
[Others]	14.209s		

*N/A is applied to non-summable metrics.

76.2%		
0% 90% 100%	cupancy 💿	Occupancy 📀
■ red flag zone ■ tuning potential better →	100.0%	88.6% 🕅
Peak occupancy you can achieve with existing computing task launch configuration.	>76.2% №	60.5% 🕅
<ul> <li>76.2% Bound by SLM</li> </ul>	100.0%	78.1% 🕅
<ul> <li>100.0% Bound by insufficient work size</li> </ul>	0.0%	73.2% 🏲
The performance is limited by low occupancy. Consider reducing the usage of SLM.		

vtune -collect gpu-hotspots [-knob <knobName=knobValue>] [--] <app>

# Kernel code optimizations

### Advanced code optimizations on kernel level

- Are FPUs and EM pipelines fully utilized?
- How are the systolic instructions used in Al application?

- Instructions counting profiles
- FPU and XMX pipeline Utilization



### oneDNN with Intel® XMX

#### GEMM with different levels of precisions



# Memory Access problems

- Global memory access penalty
- Cache memory resource limit
- Throughput vs latency problems

- Which code is responsible for latency?
- Per Basic Block and latencies per individual instructions



# Source level in-kernel profiling

vtune -collect gpu-hotspots –knob profiling-mode=source-analysis -knob source-analysis=bb-latency/mem-latency -knob computing-task-ofinterest=*pattern*#start#step#end [--] <app>

GPU Compute/Media Hotspots (preview) ③ 🛍			GPU Compute/Media Hotspots (preview) ③ 앱					
Analysis Configuration Collection Log Summary Graphics iso3dfd_kernels.cpp ×		Analysis Configuration Collection Log Summary Graphics iso3dfd_kernels.cpp ×						
Source Assembly		Sour	Source Assembly II = 67 60 60					
Sourc A Source	Estimated GPU Cycles	So 🔺	Source	성 Average Latency, Cycles 🔌	Estimated GPU Cycles			
428 for (auto iter = 0; iter < kHalfLength; iter++) {		431						
<pre>429 front[iter] = front[iter + 1];</pre>		432	// Only one new data-point read from global memory					
430 }		433	// in z-dimension (depth)					
431		434	<pre>front[kHalfLength] = prev[gid + kHalfLength * nxy];</pre>	856	1.061e+10			
432 // Only one new data-point read from global memory		435						
433 // in z-dimension (depth)		436	// Stencil code to update grid point at position given by global id (gid)					
<pre>434 front[kHalfLength] = prev[gid + kHalfLength * nxy];</pre>	8.573e+8	437	<pre>float value = c[0] * front[0];</pre>					
435		438	<pre>#pragma unroll(kHalfLength)</pre>					
436 // Stencil code to update grid point at position given by global id (gid)		439	for (auto iter = 1; iter <= kHalfLength; iter++) {					
<pre>437 float value = c[0] * front[0];</pre>	3.429e+8	440	<pre>value += c[iter] * (front[iter] + back[iter - 1] + prev[gid + iter] +</pre>	214	7.963e+9 🛑			
438 #pragma unroll(kHalfLength)		441	prev[gid - iter] + prev[gid + iter * nx] +	186	2.302e+10			
<pre>439 for (auto iter = 1; iter &lt;= kHalfLength; iter++) {</pre>		442	<pre>prev[gid - iter * nx]);</pre>	196	1.943e+10			
440 value += c[iter] * (front[iter] + back[iter - 1] + prev[gid + iter] +	1.367e+10	443	}					
441 prev[gid - iter] + prev[gid + iter * nx] +	1.097e+10	444						
442 prev[gid - iter * nx]);	2.358e+10	445	<pre>next[gid] = 2.0f * front[0] - next[gid] + value * vel[gid];</pre>	875	2.169e+10			
443 }		446						
444		447	gid += nxy;					
<pre>445 next[gid] = 2.0f * front[0] - next[gid] + value * vel[gid];</pre>	1.929e+9 💧	448	begin_z++;					
446		449	}					
447 gid += nxy;		450	}					
448 begin_z++;	3.429e+8	451						
449 }		452	/*					
450 }		453	* Host-side SYCL Code					
451		454	*		,			
452 /* Basic Block La	atencv	455	* Driver function for ISO3DFD SYCL code	Nemory L	atencv			
453 * Host-side SYCL Code	- /	456	* Uses ptr_next and ptr_prev as ping-pong buffers to achieve		- /			
454 *		457	* accelerated wave propogation					
455 * Driver function for ISO3DFD SYCL code		458	*					
456 * Uses ptr_next and ptr_prev as ping-pong buffers to achieve		459	* This function uses SYCL buffers to facilitate host to device					
457 * accelerated wave propogation		460	* buffer copies					

# **HW-Assisted Stall Sampling**

- Provides detailed breakdown of stalls and reasons
- HW-assisted Stall Sampling technology designed for Intel[®] Data Center GPU Max Series (codenamed Ponte Vecchio or PVC)
- Capabilities similar to instruction execution efficiency characterization of NVIDIA[®] Nsight[™] Compute

vtune -collect gpu-hotspots –knob profiling-mode=source-analysis -knob sourceanalysis=stall-sampling [--] <app>

9	kernel void spmv_jds_naive(global float *ds	0.1%
10	global int *d_index,	
11	global float *x_vec, cor	
12	constant int *jds_ptr_ir	
13	constant int *sh_zcnt_ir	
14	{	
15	<pre>int ix = get_global_id(0);</pre>	
16		
17	if (ix < dim) {	0.0%
18	float sum = 0.0f;	
19	// 32 is warp size	
20	<pre>int bound=sh_zcnt_int[ix/32];</pre>	0.1%
21		
22	<pre>for(int k=0;k<bound;k++)< pre=""></bound;k++)<></pre>	1.5%
23	{	
24	<pre>int j = jds_ptr_int[k] + ix;</pre>	4.5%
25	<pre>int in = d_index[j];</pre>	14.8%
26		
27	<pre>float d = d_data[j];</pre>	0.6%
28	float $t = x_vec[in];$	42.7%
29		
30	sum += d*t;	33.1%
31	}	
32		
33	dst_vector[d_perm[ix]] = sum;	1.8%
34	Most stalling line	
35		0.0%

# High-Level Stall Sampling (xe-core)

- Sample all X^e Vector Engines(XVE) statistically, one by one
  - Uses sampling interval large enough to make data manageable
  - Small enough to be representative
  - No assumption that all X^e Vector Engine are doing the same work
- Record both
  - Stall
  - Active
  - Idle (Ignore)



State	Meaning
Idle	No threads are loaded on the XVE. Do nothing.
Active	At least one pipeline is dispatching an instruction on the sampled cycle
Stall	One or more threads are loaded on the EU, but no instruction is being dispatched to any pipeline

#### src-analysis_stall imesWelcome ×

### GPU Compute/Media Hotspots (preview) ③

Analysis Configuration Collection Log Summary Graphics

Memory Hierarchy Diagram Platform



Groupin	ng: Computing Ta	ask / Functio	on / Call Stack						✓ ≪ Q Q	
				Sta	II Count by Sta	II Type ▼				
GPUA	Active	Other	Control	Pipe	Send	Dist or Acc	SBID	Synchronization	Instruction Fetch	
	2.3%		0.1%	1.1%	0.0%	5.7%	46.1%	10.7%	1.7%	
	2.3%		0.1%	1.1%	0.0%	5.7%	46.1%	10.7%	1.7%	
	2.3%		0.1%	1.1%	0.0%	5.7%	46.1%	10.7%	1.7%	
	0.0%	ļ	0.0%	0.2% 📒	0.0%	0.0%	20.8%	0.0%	0.0%	
	0.0%		0.0%	0.2% 📒	0.0%	0.0%	20.8%	0.0%	0.0%	
	0.0%		0.0%	0.2%	0.0%	0.0%	20.8%	0.0%	0.0%	
Actively executing in at least one pipeline		Stalled Stalled due to branch Due to other		Stalled due to XVE pipeline	Stalled due memory dependent	e to Stalled due to internal pipelin cy dependency	Stalled due to memory dependency or	Stalled due to sync operation	Stalled due to an instruction fetch operation	
		reasons			or internal pipeline dependene for send	cy	internal EU pipeline dependency			

**INTEL VTUNE PRO** 

### Source Analysis view of Stall Sampling

	Welcom	e × src-analysis_stall_l ×																						
	GPU	Compute/Media Hotspots (preview) @ m									INTEL VTUNE PROFILER													
Burney         Burney<	Analysis	Configuration Collection Log Summary Graphics	3_GPU_linear.cpp	×																				
State         Outor	Sourc	Assembly									Q													
0.00         Anton         Anton         Anton         Anton         Anton         Matures         Matures <td>Source</td> <td>Source</td> <td colspan="6">in Stall Count by Stall Type</td> <td></td> <td>»</td> <td></td>	Source	Source	in Stall Count by Stall Type							»														
42       Fore to indices to excluse BAD       7       0       10       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	Line -		Active	Other	Contro	I Pipe	Send [	Dist or Acc	SBID	Synchroniz	a Instruction Fetch													
4.3       n.2       6.4       n.2       6.4       n.2       6.4       n.2       6.4       n.2       6.4       N.2       N	42	sets to indices to exclude HALO																						
44       60       0       100       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td>43</td> <td>n2 * n3;</td> <td>2,748</td> <td>27</td> <td>0</td> <td>1,407</td> <td>0</td> <td>41</td> <td>0</td> <td>0</td> <td>0</td> <td></td>	43	n2 * n3;	2,748	27	0	1,407	0	41	0	0	0													
do       br(1) * theatTranght,       604       2       0       120       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	44	<pre>dx[0] + kHalfLength;</pre>	484	0	0	120	0	5	0	0 Wolco														
de       bit31 * HasfLeophz       de       d	45	dx[1] + kHalfLength;	524	2	0	125	0	1	0	0			10.00	5 52						_	_	INTEL VITU		
47       6       1       6       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7	46	<pre>dx[2] + kHalfLength;</pre>								GPL	J Compute/Media Hots	spots (pre	eview)	0 m								INIEL VIU	NE PRUFILER	
44         6         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         1         1</th1<>	47									Analys	sis Configuration Collection	a Summary	/ Graph	nics 3 GPL	L linear cop	×								
40       4	48	te linear index for each cell								7 u lony c		g Gannar	Ciupi											
60       50000       6000000000000000000000000000000000000	49	i * n2n3 + j * n3 + k;	5,867	79	0	3,222	0	198 📒	0	0 500		0° 0° 0	<u>₩</u>	Assembly grou	uping: Addre	SS							۲ <b>×</b>	
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	50									Source	Source	🤞 S	Stall Count	by Stall Type			Add A Sour Assembly		Stall Count by Stall Type		iype			
62       = prev_acc[143] * coeff_acc[0];       232       30       0       844       0       22       0       0       22       rest to indices to ext in 2 mix       100       0       41       0       0       0       37       0       0       37       0       0       37       0       0       37       0       0       37       0       0       37       0       0       37       0       0       37       0       0       37       0       0       37       0       0       37       0       0       37       0       0       0       0       37       0       0       0       0       1       0       0       0       1       0       0       0       1       0       0       0       1       0       0       0       1       0       0       0       1       0       0       0       1       0       0       0       1       0       0       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	51	te values for each cell								Line	pl	l Pipe	Send	Dist or Acc	SBID	Syn			10001101)	Pipe	Send	Dist or Acc	SBID	
53       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	52	<pre>e = prev_acc[idx] * coeff_acc[0];</pre>	2,323	30	0	844	0	23	0	0 42	sets to indices to exc						0x960	58	shl (16 M16) r114.0<					
54       + 1; x < + klailinghy x+3 (	53									43	n2 * n3;	1,407	0	41	0	0	0x968	58	send.ugm (32 MO) r11	0	0	37	0	
55	54	= 1; x <= kHalfLength; x++) {								44	dx[0] + kHalfLength;	120	0	5	0	0	0x978	58	add (16 M0) r118.0<1					
66       f       cacc(1x) + (prev_ac(1x) + x)       prev_ac(1x) + (prev_ac(1x) + x)       prev_ac(1x) + (prev_ac(1x) + x)       prev_ac(1x) + (prev_ac(1x) + x)       0       0       164       0       0       164       0       0       164       0       0       164       0       0       164       0       0       164       0       0       164       0       0       164       0       0       164       0       0       164       0       0       164       0       0       164       0       0       164       0       0       164       0       0       164       0       0       164       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	55		2,180	97	0	113	0	23	0	0 45	dx[1] + kHalfLength;	125	0	1	0	0	0x980	58	add (16 M16) r120.0<					
57       prev_acc[ids x x n] + prev_ac]       36.456       20.058       0       1.457       23.052       0       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7	56	<pre>f_acc[x] * (prev_acc[idx + x] + prev_ac</pre>	10,713	2,421	0	3,048	0	943	6,757 🛑	0 46	dx[2] + kHalfLength;						0x988	58	send.ugm (32 MO) r1	0	0	154	0	
58       prev_acclidx + x * n2n3 + prev_a       24,000       60       61       1320       64       16       1120       60       60       60       60       60       60       714       0       289       9,07       0       60       174       0       289       9,07       0       60       174       0       289       9,07       0       60       174       0       289       9,07       0       60       174       0       289       9,07       0       61       174       0       289       9,07       0       61       174       0       289       9,07       0       61       174       0       289       9,07       0       61       174       0       289       9,07       0       61       174       0       289       9,07       0       63       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	57	prev_acc[idx + x * n3] + prev_ac	38,436	2,059	0	20,038	0	1,457	23,052	47							0x998	56	add (32 M0) acc0.0<1	3	0	0	57	
59       60       1x1 = 2.0f* prev_acc[idx] - next_acc[idx] +       1.489       289       9.676       0       9.676       0       0       9.676       0       0       9.676       0       0       9.676       0       0       9.676       0       0       9.676       0       0       9.676       0       0       9.676       0       0       9.676       0       0       9.676       0       0       9.676       0       0       9.676       0       0       9.676       0       0       9.676       0       0       9.676       0       0       9.676       0       0       0.6800       57       add (32180) acc0.405       2       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0<	58	prev_acc[idx + x * n2n3] + prev_ac	24,060	6,599	0	11,350	0	824	13,521	0 48	te linear index for ea						0x9a0	56	add (32 M0) acc0.0<1	3	0	814	829	
60       bx] = 2.0f* prev_acc[idx] - next_acc[idx];       733       759       0       70       58       0       0       50       1       1       1       1       0       23       0       0       0300       57       add (32100) acc.0       20       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	59						1.21			49	i * n2n3 + j * n3 + k;	3,222	0	198 📒	0	0	0x9b0	57	add (32 M0) r40.0<1>	1	0	66	1,504	
61       value * vel_acc[idx];       373       759       0       7       0       58       0       0       51       is value a cor each cel       0       0       0       0       4       0       23       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	60	dx] = 2.0f * prev_acc[idx] - next_acc[idx] +	1,498	260	0	174	0	289	9,676	0 50							0x9c0	57	(W) mul (1 M0) acc0.	40	0	201	0	
02       peyLoc code       52       p = prev_acc[idx] + cc       844       0       23       0       0       0086       56       sync.nop null (Comps d> 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	61	<pre>value * vel_acc[idx];</pre>	373	759	0	7	0	58	0	0 51	te values for each cel						0x9d0	57	add (32 M0) acc2.0<1	2	0	0	4,250	
63       63       1       53       1       53       53       53       53       53       55       54       1       54       1       55       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57<	62	device code								52	<pre>e = prev_acc[idx] * cd</pre>	844	0	23	0	0	0x9d8	56	sync.nop null (Compa	0	0	0	0	
04       54       = 1; x <= kHalfLengt;	63		-							53							0x9e0	56	add (32 M0) r35.0<1>	9	0	0	0	
0       55       113       0       23       0       0       0x90       57       (W) mul (1100) r62.       106       0       0       0         56       fac(x) * (prevacc1       3,048       0       943       6,757       0       0x800       57       (W) mul (1100) r62.       41       0       0       0         57       prevacc1       11,350       0       824       13,521       0       0       0x310       57       (W) mul (1100) r63.       41       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	64									54	= 1; x <= kHalfLength						0x9e8	57	(W) mul (1 M0) r61.0	83	0	0	51	
$ \begin{array}{                                    $	65									55		113	0	23	0	0	0x9f0	57	(W) mul (1 MO) r62.0	106	0	0	0	
57       prev_acc[s       20,038       0       1,457       23,052       0       0xa10       57       (W) sh1 (1 M0) r63.0       41       0       0       0         58       prev_acc[s       11,350       0       824       13,521       0       0xa28       57       subb (16 M0) r84.0       30       0       44       0       0       0         59         174       0       289       9,676       0       0xa28       57       subb (16 M0) r84.0       60       0       0       0       44       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>56</td><td>f_acc[x] * (prev_acc[i</td><td>3,048</td><td>0</td><td>943</td><td>6,757 💼</td><td>0</td><td>0xa00</td><td>57</td><td>(W) mach (1 M0) r66.</td><td>45</td><td>0</td><td>60</td><td>0</td></t<>										56	f_acc[x] * (prev_acc[i	3,048	0	943	6,757 💼	0	0xa00	57	(W) mach (1 M0) r66.	45	0	60	0	
58       prev_acc[3       11,350       0       824       13,521       0       0xa18       57       subb (16(M0) r84.0x1       53       0       447       0         59       ix] = 2.0f * prev_acc       174       0       289       9,676       0       0xa28       57       subb (16(M0) r84.0x1       53       0       44       0         60       ix] = 2.0f * prev_acc       174       0       289       9,676       0       0xa28       57       sync.nop null (Compa       0       0       44       0         61       value * vel       7       0       58       0       0       0xa38       58       add (32(M) or 49.0<1)										57	prev_acc[i	20,038	0	1,457 📒	23,052 💼	0	0xa10	57	(W) shl (1 M0) r63.0	41	0	0	0	
59 $60$ $ x  = 2.0f * prev_acc$ $174  $ $0$ $289$ $9,676$ $0$ $0x28$ $57$ $sync.nop null (Compa0044060 x  = 2.0f * prev_acc174  02899,67600x3357(W) add (1 W) r90.425000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000$										58	prev_acc[i	11,350	0	824	13,521	0	0xa18	57	subb (16 M0) r84.0<1	53	0	47	0	
$60$ $ix] = 2.0f * prev_acc$ $174$ $0$ $289$ $9,676$ $0$ $0x30$ $57$ $(W)$ add $(11M0)$ r90.0 $60$ $0$ $0$ $61$ value * vel $7$ $0$ $58$ $0$ $0$ $0x38$ $58$ add $(321M0)$ r90.0 $50$ $0$ $0$ $5,428$ $62$ device code $$ $$ $$ $$ $$ $$ $0$ $0$ $5,428$ $63$ $$ $$ $$ $$ $$ $$ $0$ $0$ $5,428$ $64$ $$ $$ $$ $$ $0xa8$ $58$ $add (321M0)$ r90.0 $0$ $0$ $5,428$ $64$ $$ $$ $$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$										59							0xa28	57	sync.nop null (Compa	0	0	44	0	
61       value * vel       7       0       58       0       0       0x38       58       add (32   M0) r49.0<1>       5       0       0       5,428         62       device code										60	dx] = 2.0f * prev_acc	174	0	289 📒	9,676	0	0xa30	57	(W) add (1 M0) r90.0	60	0	0	0	
62       device code       0xa48       56       sync.nop null (Compa       0       0       0         63       0xa50       56       add (32 M0) acc2.< <td>7       0       0       376         64       0xa58       57       (W) mov (2 M0) r11.0       108       0       0       0         65       0xa60       57       add3 (16 M0) r110.0       109       0       65       0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>61</td> <td>value * vel</td> <td>7</td> <td>0</td> <td>58  </td> <td>0</td> <td>0</td> <td>0xa38</td> <td>58</td> <td>add (32 M0) r49.0&lt;1&gt;</td> <td>5</td> <td>0</td> <td>0</td> <td>5,428</td>	7       0       0       376         64       0xa58       57       (W) mov (2 M0) r11.0       108       0       0       0         65       0xa60       57       add3 (16 M0) r110.0       109       0       65       0										61	value * vel	7	0	58	0	0	0xa38	58	add (32 M0) r49.0<1>	5	0	0	5,428
63       0xa50       56       add (32  M0) acc2.0<1										62	device code						0xa48	56	sync.nop null (Compa	0	0	0	0	
64       0xa58       57       (W) mov (2[M0) r71.0       108       0       0       0         65       0xa60       57       add3 (16[M0) r110.0       109       0       65       0         62       0xa70       57       oxbb (15[M15) r95.0       0       0       0       0										63							0xa50	56	add (32 M0) acc2.0<1	7	0	0	376	
65 0xa60 57 add3 (16 M0) r110.0< 109 0 65 0 0xa70 57 cmb (16 M12) r25 0 0 0 0 0										64							0xa58	57	(W) mov (2 M0) r71.0	108	0	0	0	
										65							0xa60	57	add3 (16 M0) r110.0<	109	0	65	0	
										-00							0x270	57	(161M16) -05 04		î		0	



### **GPU Roofline Analysis**



intel ADVISOR Project: src 😤 Perspective: GPU Roofline Insights 👻 Summary • GPU Roofline Regions • Source View Application: sycl_1 Program Metrics O.30s GPU Time 9.73s CPU Time 10.03s ② 0.02s Data Transfer Time Program Elapsed Time CPU GPU GINTOPS: 298.59 нвм в...844.67 GB/s GFLOPS: 65.88 GFLOPS: 0.02 GINTOPS: 0.02 HBM Traffic: 257.09 GB GFLOP: 20.05 FP AI (HBM): 0.08 GINTOP: 90.88 INT AI (HBM): 0.35 GFLOP: 0.20 FP AI: 0.06 GINTOP: 0.21 INT AI: 0.07 2 Stacks Active: 0.0% XVE Threading Occupancy: 59.2% Thread Count: 1





This application is bounded by HBM Bandwidth: (2) 844.67

69% of 1215.09 GB/sec  $\sim$ 



		Average GPU Vector Engine Utilization:	8.0%	Total CPU Time
XVE Array Active:	8.0%	Incoming GTI Bandwidth Bound: Outgoing GTI Bandwidth Bound:	35.2% 17.8%	Time in 9 Vectorized Loops
XVE Array Stalled:	69.9%			Time in Scalar Code
XVE Array Idle:	22.1%			

36

13% 3.12s 87%

3.58s 100%

0.46s

### GPU Roofline in Intel[®] Advisor

1st method: Run the shortcut command, simple

2nd method: Run the analyses separately, compatible with MPI, more flexible

\$ advisor --collect=roofline --profile-gpu -project-dir ./advi_results -- <app-withparameters>
\$ advisor --collect=survey --profile-gpu --project-dir
./advi_results -- <app-with-parameters>
\$ advisor --collect=tripcounts --flop --profile-gpu project-dir ./advi results -- <app-with-parameters>

Add –target-gpu option on mutli-gpu systems

\$ advisor --collect=roofline --profile-gpu --project-dir ./advi_results --target-gpu 0:77:0.0 -- <appwith-parameters>

• View results in Intel[®] Advisor GUI or generate an HTML report

#### o HTML GPU Roofline chart

\$ advisor --report roofline -gpu --project-dir ./advisor_dir --report-output=./roofline.html

#### • interactive HTML report

\$ advisor --report all --project-dir ./advisor_dir -report-output=./roofline_report.html

#