
1

Profiling Large-Scale Heterogeneous
Applications with Intel® VTune™ Profiler
Xiao Zhu, Rupak Roy– Technical Consulting Engineer (Intel Corporation)

2

Agenda

• VTune Profiling Capabilities

• Latest Features in Vtune

• Deep Dive into VTune Features
• CPU Profiling
• GPU Profiling

• GPU Roofline

3

Optimize Performance
Intel® VTune™ Profiler

Get the Right Data to Find Bottlenecks
 A suite of profiling for CPU, GPU, FPGA,, memory, cache,

storage, offload, power…
 Application or system-wide analysis
 DPC++, C, C++, Fortran, Python*, Go*, Java*, or a mix
 Linux, Windows, FreeBSD, Android, Yocto and more
 Containers and VMs

Analyze Data Faster
 Collect data HW/SW sampling and tracing w/o re-

compilation
 See results on your source, in architecture diagrams, as a

histogram, on a timeline…
 Filter and organize data to find answers

Work Your Way
 User interface or command line
 Profile locally and remotely

4

Rich Set of Profiling Capabilities
Intel® VTune™ Profiler

Algorithm Optimization
 Hotspots
 Anomaly Detection
 Memory Consumption

Microarch.&Memory Bottlenecks
 Microarchitecture Exploration
 Memory Access

Accelerators / xPU
 GPU Offload
 GPU Compute / Media Hotspots
 CPU/FPGA Interaction

Parallelism
 Threading
 HPC Performance Characterization

Platform & I/O
 Input and Output
 System Overview
 Platform Profiler

Multi-Node
 Application Performance Snapshot

5

What’s New in Intel® VTune™ Profiler
Profile your applications running on latest Intel HW
• 4th generation Intel® Xeon® Scalable processors (formerly code named Sapphire Rapids)

• Intel® Xeon® Max Series CPUs (code named Sapphire Rapids HBM)

• 13th generation Intel® Core™ processors (formerly code named Raptor Lake),

• Intel® Data Center GPU Max Series (formerly code named Ponte Vecchio).

Accelerate GPU code
• Get visibility into XeLink cross-card traffic for issues such as stack-to-stack traffic, throughput and bandwidth

bottlenecks. Identify imbalances of traffic between CPU and GPU through a GPU topology diagram.

• Identify the reasons of the stalls in Xe Vector Engines (XVEs), formerly known as Execution Units (EUs). Use
this information to better understand and resolve the stalls in your busiest computing tasks.

• Profile applications executing on multiple GPUs.

Optimize Python code
• Identify and optimize performance hotspots of Python code, now supporting Python 3.9.*.

Decide memory mode for your workload
• Identify performance gained from high bandwidth memory (HBM). Run Intel® VTune Profiler for each mode

(HBM only, Flat, Cache) to identify which profile offers the best performance.

Cross-card, stack-to-stack, and card-to-socket bandwidth are presented on GPU
Topology Diagram.

The histogram shows the distribution of the elapsed time per maximum bandwidth
utilization among all packages.

Only x86 CPU with High
Bandwidth Memory

64GB
HBM2e

~1TB/s memory BW

>1GB/core HBM memory capacity

HBM Only
Workloads ≤ 64GB capacity

HBM Caching Mode
DRAM backed cache
Improved performance for workloads > 64GB capacity

HBM Flat Mode
Flat Mem Regions w/ HBM & DRAM
Workloads > 64GB capacity

HBM

HBM

HBM
DDR

DDR

No code change
No DDR

Code change may be needed
to optimize perf

Provides flexibility for
applications that require
large memory capacity

No code change
HBM Caches DDR

Blend of both prior modes. Whole
applications may fit in HBM cache
Blurs line between cache and memory

DDR5
8 channels per

CPU @ 4800MTS (1DPC) / 16
DIMMs per socket

Memory modes

System boots and
operates with
HBM only

7

High Bandwidth Memory (HBM) Utilization
Intel® VTune™ Profiler

Understand HBM memory usage

• Is the application performance affected by HBM utilization?

• How is the bandwidth distributed between DRAM vs. HBM?

Identify memory mode for your workload

• Does your workload benefit from HBM?

• Profile your workload for each mode - HBM, flat or cache

The histogram shows the distribution of the elapsed time per maximum bandwidth utilization
among all packages.

The workload performance in various HBM modes can be evaluated by running the collection in
each mode and analyzing the bandwidth as described above.

8

Get Visibility into Xe Link Cross-card Traffic
Intel® VTune™ Profiler

Identify bottlenecks related to Xe Link

• Understand cross-card memory transfers and
Xe Link utilization

• Visualize GPU Topology of the system and
estimate bandwidth of each link, stack or card.

• See usage of Xe Link and correlate with code
execution.

Cross-card, stack-to-stack, and card-to-socket bandwidth are presented on GPU Topology
Diagram.

Timeline view can show bandwidth usage of Xe Link over time.

Intel ConfidentialDepartment or Event Name 99

Access Intel® VTune™ Profiler via web browser

Interactive analysis
1) Configure SSH to a remote Linux* target
2) Choose and run analysis with the UI

Command line analysis
1) Run command line remotely on Linux* target

Intel ConfidentialDepartment or Event Name 1010

Command Line Interface
Automate analysis

• Set up the environment variables:
–Windows: <install-dir>\env\vars.bat
–Linux: <install-dir>/env/vars.sh

Help:
vtune –help
vtune –help collect hotspots
Use UI to setup
1) Configure analysis in UI
2) Press “Command Line…” button
3) Copy & paste command vtune -collect hpc-performance [-knob <knobName=knobValue>] [--] <app>

mpiexec –n 12 vtune –c gpu-hotspots –r gpuhs_mpi –trace-mpi [-knob
<knobName=knobValue>] [--] <app>

Intel ConfidentialDepartment or Event Name 1111

Custom Analysis with VTune Profiler

allow-multiple-runs

Step 1

Step 2
Step 3

Step 3

Intel ConfidentialDepartment or Event Name 1212

General strategy

Intel ConfidentialDepartment or Event Name 1313

Intel® VTune™ Profiler Application Performance Snapshot (APS)

• High-level overview of application performance
• Detailed reports on MPI statistics

• Primary optimization areas and next steps in
analysis with deep tools – e.g. outlier analysis for
MPI applications at scale

• Explore on source of imbalance
• Choose nodes/ranks for detailed profiling with

VTune

• Low collection overhead – 1-3%*
• Scales to large jobs

• Tested and worked on 64K ranks
• Trace size on default statistics level ~ 4Kb per rank

• Command Line:

<mpi launcher> <mpi parameters> aps <app>

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/code-profiling-scenarios/mpi-code-analysis.html

14

Intel® VTune™ Profiler

HPC Performance Characterization

A starting point for performance optimization
• CPU/GPU usage, Memory efficiency, and

Floating-point utilization
vtune -collect hpc-performance [-knob <knobName=knobValue>] [--] <app>

Intel ConfidentialDepartment or Event Name 1515

Selective Profiling
1. Use Multiple Program Multiple Data MPI run and apply VTune Profiler profiling for the ranks of interest.

$ export VTUNE_CL=vtune -collect hpc-performance -trace-mpi -result-dir my_result

$ mpirun -host myhost1 –ppn 8 -n 7 <app>: -n 1 $VTUNE_CL -- <app> :-n 7 <app>: -n 1 $VTUNE
_CL -- <app>

2. And if you are interested in a particular rank (for example, an outlier rank defined by APS), it is recommended to
write a launch script checking the rank number and pass the script to mpirun. For example, it can look like:

#!/bin/bash

if [$PMI_RANK == 67]; then
 # Rank = 67 is chosen for vtune collection
 $VTUNE_CL -- <app>

else
 # all other ranks just run the application
 <app>
fi

16

Hotspots Analysis
• Understand an application flow
• Identify sections of code that get a lot of

execution time
• Sampling-based collection modes

• User-Mode Sampling
• Hardware Event Based Sampling

• Define a performance baseline.

• Identify the hottest function.

• Identify algorithm issues.

• Analyze source.

Intel ConfidentialDepartment or Event Name 1818

What’s Using All The Memory?
Memory Consumption Analysis

See What Is Allocating Memory
 Lists top memory consuming functions
 memory consumption distribution over

time.
 View source to understand cause
 Filter by time using the memory

consumption timeline
- Focus on the peak values on the Timeline pane

 Introduce additional overhead due to
instrumentation .

Native language support is not currently available for Windows*

Intel ConfidentialDepartment or Event Name 1919

Optimize Memory Access
Memory Access Analysis

• Tune data structures for performance
• Attribute cache misses to data structures

(not just the code causing the miss)
• Support for custom memory allocators
• Shows average load latency in cycles

• Optimize NUMA latency & scalability
• Auto detect max system bandwidth
• Detects inter-socket bandwidth

20

Intel® VTune™ Profiler

Profile GPU Performance
 Explicit support of DPC++, DirectX, Intel® Media SDK,

OpenCL™, and OpenMP-offload software technology

 Multi-GPU systems analysis

 GPU Offload cost profiling
• CPU vs GPU boundness

• Offload overhead & host-to-device traffic, GPU compute vs data transfer

• GPU utilization and software queues per DMA packet domain

 GPU Hotspots analysis
• EU and memory efficiency metrics, GPU Occupancy limiting factors

• Memory hierarchy diagram and throughput analysis

 Source level in-kernel profiling
• Dynamic instruction count

• Basic Block execution latency

• Memory latency

21

GPU Performance Problems

Addressing performance issues with dynamic analysis tools

• Work Distribution

• Data transfer

• GPU occupancy

• Memory access

• Kernel inefficiencies

• Non-scaling implementations

• …

22

Work Distribution
Work distribution among computing resources

• CPU or GPU bound?

• GPU Utilization for OpenMP
regions/SYCL kernels

• EU/XVEs efficiency (Active, Stalled, Idle)

• Offload Time characterization
• Compute
• Data Transfer
• Overhead

vtune -collect gpu-offload [-knob <knobName=knobValue>] [--] <app>

23

Host and GPU Data Transferring

• Data transfer time

• Amount of transferred data

• Transfer direction

• Execution time

Host
Memory

GPU
Memory

CPU
Compute

GPU
Compute

PCIe

A commonly known problem of host-to-device transfer performance

vtune -collect gpu-offload [-knob <knobName=knobValue>] [--] <app>

24

Graphics View of GPU Offload

CPU

GPU

25

Graphics View of GPU Offload

CPU

GPU

26

Achieving High XVE Threads Occupancy

Occupancy analysis helps identifying problems with work mapping

• Detecting workgroups by global and local sizes

• Defining sub-groups by vector sizes or SIMD Width

• Specifying SLM size

• Barriers usage

• Tiny/huge kernels

 scheduling issues

vtune -collect gpu-hotspots [-knob <knobName=knobValue>] [--] <app>

27

Kernel code optimizations

Advanced code optimizations on kernel level

• Are FPUs and EM pipelines fully utilized?

• How are the systolic instructions used in AI
application?

• Instructions counting profiles

• FPU and XMX pipeline Utilization

28

oneDNN with Intel® XMX
GEMM with different levels of precisions

FP32 FP16 BF16 INT8

29

Memory Access problems
• Global memory access penalty

• Cache memory resource limit

• Throughput vs latency problems

• Which code is responsible for latency?

• Per Basic Block and latencies per individual
instructions

30

Source level in-kernel profiling

Basic Block Latency Memory Latency

vtune -collect gpu-hotspots –knob profiling-mode=source-analysis -knob source-analysis=bb-latency/mem-latency -knob computing-task-of-
interest=*pattern*#start#step#end [--] <app>

31

HW-Assisted Stall Sampling
 Provides detailed breakdown of

stalls and reasons

 HW-assisted Stall Sampling
technology designed for Intel®
Data Center GPU Max Series (code-
named Ponte Vecchio or PVC)

 Capabilities similar to instruction
execution efficiency
characterization of
NVIDIA® Nsight™ Compute

Most stalling line
vtune -collect gpu-hotspots –knob profiling-mode=source-analysis -knob source-

analysis=stall-sampling [--] <app>

32

High-Level Stall Sampling (Xe-core)

• Sample all Xe Vector
Engines(XVE) statistically, one by
one

• Uses sampling interval large
enough to make data manageable

• Small enough to be representative
• No assumption that all Xe Vector

Engine are doing the same work
• Record both

● Stall
● Active
● Idle (Ignore)

Xe-
core0

VE0

VE1

VE15

Xe-
core1

VE0

VE1

VE15

Xe-
core63

VE0

VE1

VE15

….

State Meaning
Idle No threads are loaded on the XVE. Do nothing.

Active At least one pipeline is dispatching an instruction on the sampled cycle

Stall One or more threads are loaded on the EU, but no instruction is being
dispatched to any pipeline

33

Stalled due to branch Stalled due to
XVE pipeline

Stalled due to
internal pipeline
dependency

Stalled due to
memory
dependency or
internal EU
pipeline
dependency

Stalled due to
sync operation

Stalled due to an
instruction fetch
operation

Actively executing in
at least one pipeline

Stalled
Due to
other
reasons

Stalled due to
memory
dependency
or internal
pipeline
dependency
for send

34

Source Analysis view of Stall Sampling

35

• Are the GPU

• kernels memory
bound or compute
bound?

• Compare the kernels
performance to the
capabilities of the
GPU

• Memory Level
Roofline -
unambiguous
bottleneck detection

GPU Roofline Analysis

36

GPU Roofline Analysis

37

GPU Roofline in Intel® Advisor

1st method: Run the shortcut command, simple 2nd method: Run the analyses separately, compatible with MPI,
more flexible

$ advisor –-collect=roofline –-profile-gpu –-
project-dir ./advi_results -- <app-with-
parameters>

$ advisor –-collect=survey –-profile-gpu –-project-dir
./advi_results -- <app-with-parameters>
$ advisor –-collect=tripcounts –-flop –-profile-gpu -
– project-dir ./advi_results -- <app-with-parameters>

• Add –target-gpu option on mutli-gpu systems
$ advisor –-collect=roofline –-profile-gpu –-project-dir ./advi_results --target-gpu 0:77:0.0 -- <app-
with-parameters>

• View results in Intel® Advisor GUI or generate an HTML report

o HTML GPU Roofline chart
$ advisor --report roofline –gpu –-project-dir ./advisor_dir --report-output=./roofline.html

o interactive HTML report
$ advisor --report all –-project-dir ./advisor_dir –report-output=./roofline_report.html

38

	Profiling Large-Scale Heterogeneous Applications with Intel® VTune™ Profiler
	Agenda
	Optimize Performance�Intel® VTune™ Profiler
	Rich Set of Profiling Capabilities�Intel® VTune™ Profiler
	What’s New in Intel® VTune™ Profiler�
	Slide Number 6
	High Bandwidth Memory (HBM) Utilization�Intel® VTune™ Profiler
	Get Visibility into Xe Link Cross-card Traffic�Intel® VTune™ Profiler
	Access Intel® VTune™ Profiler via web browser
	Command Line Interface�Automate analysis
	Custom Analysis with VTune Profiler
	General strategy
	Intel® VTune™ Profiler Application Performance Snapshot (APS)
	Intel® VTune™ Profiler�HPC Performance Characterization
	Selective Profiling
	Hotspots Analysis
	What’s Using All The Memory?�Memory Consumption Analysis
	Optimize Memory Access�Memory Access Analysis
	Intel® VTune™ Profiler�Profile GPU Performance
	GPU Performance Problems
	Work Distribution
	Host and GPU Data Transferring
	Graphics View of GPU Offload
	Graphics View of GPU Offload
	Achieving High XVE Threads Occupancy
	Kernel code optimizations
	oneDNN with Intel® XMX
	Slide Number 29
	Source level in-kernel profiling�
	HW-Assisted Stall Sampling
	High-Level Stall Sampling (Xe-core)
	Slide Number 33
	Source Analysis view of Stall Sampling
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38

