
IXPUG ANNUAL CONFERENCE 2023

PATH TO EXASCALE 
MATERIAL SIMULATION 
ON AURORA 
SUPERCOMPUTER

erhtjhtyhy

YE LUO
Computational Science Division, 
Argonne National Laboratory

THOMAS APPLENCOURT
Leadership Computing Facility, 
Argonne National Laboratory

JEONGNIM KIM
Intel Corp

Sep. 21th 2023, Santa Clara, CA



OUTLINE

 QMCPACK intro
 Redesign for performance portability
 GPU and OpenMP porting tips
 QMCPACK on INTEL GPUs

2



ACKNOWLEDGEMENT

 Lead PI: Paul Kent
 This research was supported by the 

Exascale Computing Project (17-SC-
20-SC), a joint project of the U.S. 
Department of Energy’s Office of 
Science and National Nuclear Security 
Administration, responsible for 
delivering a capable exascale 
ecosystem, including software, 
applications, and hardware technology, 
to support the nation’s exascale 
computing imperative. 

Exascale Computing Project : application development

3



ELECTRONIC STRUCTURE METHODS
QMC can be the new sweet spot

4

2,000 10,000 100,00050

system 
size
(electrons)

TB 
N3

DFT 
 N2-3

QMC 
 N3-4

CC
 N7

CI
 N!

accuracy
(eV)

0.5+0.05-0.10.001-0.01exact

chemical
bonds

cohesion,
barriers

superconductivity,
magnetism

quantum 
chemistry

not
ab initio

Time scale: picosecond = 10-12 seconds

Length scale: 10 nm = 10-8 meters



PETASCALE TO EXASCALE CHALLENGE
How large problem can we solve?

5

TiO2 polymorphs
216 atoms with 1536 electrons, 10 meV/f.u.
YL et al. New J. Phys. 18 113049 (2016)

Metal organic framework
153 atoms with 594 electrons, 10 
meV total energy.
A Benali, YL, et al. J. Phys. Chem. C, 
122, 16683 (2018)

What is next?
1. Solve faster and more 

petascale problems
2. Solve much larger 

problems

1k atoms
10k electrons



QMCPACK
 QMCPACK, is a modern high-performance open-

source Quantum Monte Carlo (QMC) simulation code 
for electronic structure calculations of molecular, quasi-
2D and solid-state systems.

 The code is C/C++ and adopts MPI+X 
(OpenMP/CUDA)

 Monte Carlo: massive Markov chains (walkers) 
evolving in parallel. 1st level concurrency. Good for MPI 
and coarse level threads.

 Quantum: The computation in each walker can be 
heavy when solving many body systems (electrons). 
2nd level concurrency. Good for fine level threads and 
SIMD.

 Math libraries: BLAS/LAPACK, HDF5, FFTW
7



WALKER BASED PARALLELISM

 Weak scaling efficiency 99% on 2/3 Mira and 95% on almost full Titan.
 Weak scaling, fix work per node. Strong scaling, fix the total number of samples.
 Equilibration excluded.

Works extreme well on petascale supercomputers

8

1

2

4

8

16

1024 2048 4096 8192 16384 32768
St

ro
ng

 s
ca

lin
g 

sp
ee

d-
up

Node counts

ideal
Titan
Mira

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1024 2048 4096 8192 16384 32768

W
ea

k 
sc

al
in

g 
ef

fic
ie

nc
y

Node counts

ideal
Titan
Mira



UNIFY BOTH IMPLEMENTATIONS

Number of walkers

N
um

be
r o

f e
le

ct
ro

ns

Le
ga

cy
C

PU
 d

riv
er

Legacy GPU driver

Target problem
size space.

Performance 
required

By design

9

Number of walkers

N
um

be
r o

f e
le

ct
ro

ns

Performance portable
Batched driver

Target problem
size space.

Performance 
required



NEW DESIGN WITH CROWDS

10

seq.

seq.

batched

para.

Population

crowd

crowd

crowd

crowd

• lock-step walkers within a crowd
• Independent crowds
• Decay to legacy implementations

doi: 10.1109/HiPar56574.2022.00008.



OPENMP OFFLOAD GPU IMPLEMENTATION

 Use portable OpenMP target feature
– Portable on NVIDIA, AMD, Intel GPUs. Fallback on CPU as well.
– Multiple compilers. GNU, Clang, AOMP, NVHPC, OneAPI

 Multiple crowds (CPU threads) to launch kernels to GPUs
– Maximize GPU utilization. Overlapping compute and transfer by OpenMP.

 Specialized in SYCL/CUDA/HIP to call INTEL/NVIDIA/AMD accelerated libraries.
– MKL, cuBLAS/cuSolver, hipBLAS/rocSolver

A bit more software technology to handle GPUs 

11



MULTI-THREADED OFFLOAD

 Using pinned memory to keep CPU cores submitting work to GPUs.
– Method 1. Pin host memory using vendor APIs like cudaHostRegister
– Method 2. allocated pinned memory using vendor APIs like 

sycl::aligned_alloc_device<T>. github#3973
– Method 3. Use OpenMP extension llvm/omp_target_alloc_host (supported 

by icx/icpx)

 Avoid allocating/deallocating GPU memory on the fly
– Allocating/deallocating operations are very slow
– Serialization prevents concurrent execution.

A few more tips

12



USING L0 COMMANDLISTIMMEDIATE

 Both OpenMP and SYCL are built on top of LevelZero
– Command list (old) and “immediate” command list (new)

 OpenMP switch to L0 “immediate” command list by default
– Used like a CUDA stream
– Enqueue H2D/Kernel/D2H in a single shot and reduce time spent on L0 

runtime.
 SYCL in-order queue

– Use sycl::property::queue::in_order() when constructing the queue. 
github/#4663

– Reduce effort for porting algorithms using CUDA streams.
– No need of managing events by users. github/#4738

Low latency kernel submission 

13



SYCL AND OPENMP INTEROPERABILITY

 QMCPACK uses OpenMP to generate L0 device and context.
#pragma omp interop device(id) init(prefer_type("level_zero"), targetsync : interop)
auto hPlatform = omp_get_interop_ptr(interop, omp_ipr_platform, &err);
auto hContext = omp_get_interop_ptr(interop, omp_ipr_device_context, &err);
auto hDevice = omp_get_interop_ptr(interop, omp_ipr_device, &err);

 Build SYCL objects
sycl::ext::oneapi::level_zero::make_platform(reinterpret_cast<pi_native_handle>(hPlatform));
sycl::ext::oneapi::level_zero::make_device(sycl_platform, 
reinterpret_cast<pi_native_handle>(hDevice));
default_device_queue = 
std::make_unique<sycl::queue>(visible_devices[sycl_default_device_num].get_context(),
                                                         visible_devices[sycl_default_device_num].get_device(),
                                                         sycl::property::queue::in_order());

QMCPACK github #4382

14

Keep a per device 
default queue for non-
critical use



GPU MEMORY QUERY

 Not on default.
– SYCL only code, user initializes sysman.  
– OpenMP code, Need environment variable ZES_ENABLE_SYSMAN=1

 get_info<sycl::ext::intel::info::device::free_memory>()
– SYCL extension

QMCPACK Github #4692

15



16



SUMMARY 

 QMCPACK was ported for Intel GPUs on Aurora with
– OpenMP offload. Mostly validating compilers and runtime libraries.
– Minimal SYCL code for optimal performance.
– Using MKL libraries. Validating this correctness and performance.

 The overall performance portability strategy fits well on Intel software and 
hardware.
– We achieved good performance which paves the way for the success of 

Aurora.
– There will be further performance gain as we keep improving QMCPACK and 

software for intel GPUs.

17




	Path to Exascale Material Simulation on Aurora Supercomputer
	Outline
	acknowledgement
	Electronic Structure Methods
	Petascale to Exascale Challenge
	Slide Number 7
	Walker based parallelism
	Unify both implementations
	New design with Crowds
	OpenMP offload GPU implementation
	Multi-threaded offload
	Using L0 commandlistimmediate
	SYCL and OpenMp interoperability
	GPU memory query
	Slide Number 16
	Summary	
	Slide Number 18

