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OUTLINE

 QMCPACK intro
 Redesign for performance portability
 GPU and OpenMP porting tips
 QMCPACK on INTEL GPUs
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ELECTRONIC STRUCTURE METHODS
QMC can be the new sweet spot
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PETASCALE TO EXASCALE CHALLENGE
How large problem can we solve?
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TiO2 polymorphs
216 atoms with 1536 electrons, 10 meV/f.u.
YL et al. New J. Phys. 18 113049 (2016)

Metal organic framework
153 atoms with 594 electrons, 10 
meV total energy.
A Benali, YL, et al. J. Phys. Chem. C, 
122, 16683 (2018)

What is next?
1. Solve faster and more 

petascale problems
2. Solve much larger 

problems

1k atoms
10k electrons



QMCPACK
 QMCPACK, is a modern high-performance open-

source Quantum Monte Carlo (QMC) simulation code 
for electronic structure calculations of molecular, quasi-
2D and solid-state systems.

 The code is C/C++ and adopts MPI+X 
(OpenMP/CUDA)

 Monte Carlo: massive Markov chains (walkers) 
evolving in parallel. 1st level concurrency. Good for MPI 
and coarse level threads.

 Quantum: The computation in each walker can be 
heavy when solving many body systems (electrons). 
2nd level concurrency. Good for fine level threads and 
SIMD.

 Math libraries: BLAS/LAPACK, HDF5, FFTW
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WALKER BASED PARALLELISM

 Weak scaling efficiency 99% on 2/3 Mira and 95% on almost full Titan.
 Weak scaling, fix work per node. Strong scaling, fix the total number of samples.
 Equilibration excluded.

Works extreme well on petascale supercomputers
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UNIFY BOTH IMPLEMENTATIONS
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NEW DESIGN WITH CROWDS
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• lock-step walkers within a crowd
• Independent crowds
• Decay to legacy implementations

doi: 10.1109/HiPar56574.2022.00008.



OPENMP OFFLOAD GPU IMPLEMENTATION

 Use portable OpenMP target feature
– Portable on NVIDIA, AMD, Intel GPUs. Fallback on CPU as well.
– Multiple compilers. GNU, Clang, AOMP, NVHPC, OneAPI

 Multiple crowds (CPU threads) to launch kernels to GPUs
– Maximize GPU utilization. Overlapping compute and transfer by OpenMP.

 Specialized in SYCL/CUDA/HIP to call INTEL/NVIDIA/AMD accelerated libraries.
– MKL, cuBLAS/cuSolver, hipBLAS/rocSolver

A bit more software technology to handle GPUs 
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MULTI-THREADED OFFLOAD

 Using pinned memory to keep CPU cores submitting work to GPUs.
– Method 1. Pin host memory using vendor APIs like cudaHostRegister
– Method 2. allocated pinned memory using vendor APIs like 

sycl::aligned_alloc_device<T>. github#3973
– Method 3. Use OpenMP extension llvm/omp_target_alloc_host (supported 

by icx/icpx)

 Avoid allocating/deallocating GPU memory on the fly
– Allocating/deallocating operations are very slow
– Serialization prevents concurrent execution.

A few more tips
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USING L0 COMMANDLISTIMMEDIATE

 Both OpenMP and SYCL are built on top of LevelZero
– Command list (old) and “immediate” command list (new)

 OpenMP switch to L0 “immediate” command list by default
– Used like a CUDA stream
– Enqueue H2D/Kernel/D2H in a single shot and reduce time spent on L0 

runtime.
 SYCL in-order queue

– Use sycl::property::queue::in_order() when constructing the queue. 
github/#4663

– Reduce effort for porting algorithms using CUDA streams.
– No need of managing events by users. github/#4738

Low latency kernel submission 
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SYCL AND OPENMP INTEROPERABILITY

 QMCPACK uses OpenMP to generate L0 device and context.
#pragma omp interop device(id) init(prefer_type("level_zero"), targetsync : interop)
auto hPlatform = omp_get_interop_ptr(interop, omp_ipr_platform, &err);
auto hContext = omp_get_interop_ptr(interop, omp_ipr_device_context, &err);
auto hDevice = omp_get_interop_ptr(interop, omp_ipr_device, &err);

 Build SYCL objects
sycl::ext::oneapi::level_zero::make_platform(reinterpret_cast<pi_native_handle>(hPlatform));
sycl::ext::oneapi::level_zero::make_device(sycl_platform, 
reinterpret_cast<pi_native_handle>(hDevice));
default_device_queue = 
std::make_unique<sycl::queue>(visible_devices[sycl_default_device_num].get_context(),
                                                         visible_devices[sycl_default_device_num].get_device(),
                                                         sycl::property::queue::in_order());

QMCPACK github #4382
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GPU MEMORY QUERY

 Not on default.
– SYCL only code, user initializes sysman.  
– OpenMP code, Need environment variable ZES_ENABLE_SYSMAN=1

 get_info<sycl::ext::intel::info::device::free_memory>()
– SYCL extension

QMCPACK Github #4692
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SUMMARY 

 QMCPACK was ported for Intel GPUs on Aurora with
– OpenMP offload. Mostly validating compilers and runtime libraries.
– Minimal SYCL code for optimal performance.
– Using MKL libraries. Validating this correctness and performance.

 The overall performance portability strategy fits well on Intel software and 
hardware.
– We achieved good performance which paves the way for the success of 

Aurora.
– There will be further performance gain as we keep improving QMCPACK and 

software for intel GPUs.
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