
Andrey Alekseenko

SYCL for Performance and Portability:

A Molecular Dynamics Case Study

KTH Royal Institute of Technology & SciLifeLab

Stockholm, Sweden

GROMACS

• Open-source molecular dynamics engine
• High-performance for a wide range of modeled systems

• From 104 to 109 particles

• … and on a wide range of platforms
• x86-64, ARM, POWER, RISC-V
• 11 SIMD backends
• AMD, Apple, Intel, and NVIDIA GPUs; Intel Xeon Phi
• Windows, MacOS, BSD, included in many Linux distros

2023-09-21 IXPUG 2023 2

Molecular dynamics: science at 1000 fps

• Iterative problem
• One step ~1 fs, need to simulate µs to ms

• 109-1012 steps

2023-09-21 IXPUG 2023 3

Páll et al., J. Chem. Phys. 153, 134110 (2020)

https://aip.scitation.org/doi/abs/10.1063/5.0018516

GROMACS

• Main language: C++17
• 468k lines of C++ code
• With a bit of legacy (first release: 1991)

• MPI for inter-node parallelism
• OpenMP for multithreading
• SIMD for low-latency operations on CPU
• GPU offload for high-throughput operations

• CUDA: NVIDIA GPUs
• OpenCL: AMD, Apple, Intel, NVIDIA GPUs
• SYCL: AMD, Intel, NVIDIA GPUs

2023-09-21 IXPUG 2023 4

Molecular dynamics: science at 1000 fps

• Iterative problem
• One step ~1 fs, need to simulate µs to ms

• 109-1012 steps

2023-09-21 IXPUG 2023 5

Páll et al., J. Chem. Phys. 153, 134110 (2020)

https://aip.scitation.org/doi/abs/10.1063/5.0018516

Molecular dynamics: science at 1000 fps

2023-09-21 IXPUG 2023 6

Páll et al., J. Chem. Phys. 153, 134110 (2020)

https://aip.scitation.org/doi/abs/10.1063/5.0018516

GROMACS: GPU acceleration evolution

• Designed for CUDA (~2010)
• Multiple in-order queues
• Manually-managed USM memory
• Explicit event-based synchronization

• OpenCL added for AMD GPUs (~2014)
• With compatibility layer to reduce host code duplication
• Intel GPU support added in ~2018

• SYCL added for Intel GPUs via oneAPI (~2021)
• Reusing the same compatibility layer
• Later to hipSYCL/AdaptiveCpp and NVIDIA and AMD GPUs (~2022)

2023-09-21 IXPUG 2023 7

Supported hardware

• Primary targets:
• AMD CDNA2 GPUs with AdaptiveCpp/hipSYCL
• Intel Xe-HPC GPUs with oneAPI

• Secondary targets:
• Other AMD GPUs with oneAPI and AdaptiveCpp
• Other Intel GPUs with oneAPI

• Should work:
• NVIDIA GPUs with oneAPI and AdaptiveCpp

2023-09-21 IXPUG 2023 8

Shoehorning SYCL into legacy code

• Prior to SYCL2020: only buffers/accessors
• Wrapper to use buffers à la USM

• With SYCL2020: USM-only
• Identical code logic with CUDA/OpenCL
• Accessors lead to register spills
• Have the data copies and multiple streams anyway

• Only difference: need context for pinned host allocations

2023-09-21 IXPUG 2023 9

Shoehorning SYCL into legacy code

CUDA: Barrier-like events; no such thing in SYCL standard
1. Refactor code to use returned events
2. Use extensions

• ext_oneapi_submit_barrier, HIPSYCL_EXT_ENQUEUE_CUSTOM_OPERATION
• Better mapping to underlying CUDA/HIP model
• Reduced launch cost

• AdaptiveCpp: HIPSYCL_EXT_COARSE_GRAINED_EVENTS
• oneAPI: waiting for https://github.com/KhronosGroup/SYCL-Docs/issues/404

3. Track last returned event in our queue wrapper
• Might be needed for oneAPI’s Immediate command lists / SYCL Graphs

2023-09-21 IXPUG 2023 10

https://github.com/KhronosGroup/SYCL-Docs/issues/404

Shoehorning SYCL into legacy code

• External libraries: FFT, GPU-aware MPI
• Native SYCL libraries only available for Intel hardware:

• IntelMPI; oneMKL, BBFFT

• With USM, native ones work fine via interop!
• OpenMPI, MPICH; cuFFT, rocFFT, heFFTe, vkFFT

• Required effort: CMake and thin wrapper/launcher
• A lot duplication for FFT

2023-09-21 IXPUG 2023 11

Performance-portability challenges

• It’s all LLVM, so not far from native, but
• Performance tuning with software stack in flux
• Kernel performance is usually not a huge problem

• AoS➜SoA to improve register allocation on Xe-HPC
• 2.4x performance improvement for some kernel flavors
• No impact on CDNA (gfx908)

• On CDNA2 with ROCm 5.3: ~10% performance loss with SoA
• ROCm 5.5: further ~10% loss
• SoA➜AoS resolves most (not all) regressions with ROCm 5.5

2023-09-21 IXPUG 2023 12

Launch latency challenges

• MD is often about strong scaling

• Compute and data transfers get faster
• Latency stays ~the same

• Communications often on the critical path
• CPU can do useful work too

2023-09-21 IXPUG 2023 13

Launch overheads

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800

La
un

ch
 G

PU
 o

ps
.,

%

System size, k atoms

Percentage of time main thread spends launching GPU tasks (1 rank)

LevelZero, batched

LevelZero, immediate

OpenCL

2023-09-21 IXPUG 2023 14

Intel Xeon 8480+, 1xPVC 1100, oneAPI 2023.2, PME grappa box, -ntomp 6 -bonded gpu

Launch overheads

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000

La
un

ch
 G

PU
 o

ps
.,

%

System size, k atoms

Percentage of time main thread spends launching GPU tasks (8 ranks)

oneAPI

AdaptiveCpp

Native HIP

2023-09-21 IXPUG 2023 15

AMD Epyc 7A53, 8xMI250X, ROCm 5.3.3, RF grappa box, -ntomp 6 -bonded gpu

Launch overheads

20

30

40

50

60

70

80

90

100

6 8 10 12 14 16

A
ch

ie
ve

d
pe

rf
or

m
an

ce
, %

OpenMP threads per rank

Performance depending on CPU usage (8 ranks)

oneAPI

AdaptiveCpp

Native HIP

2023-09-21 IXPUG 2023 16

AMD Epyc 7A53, 1xMI250X, ROCm 5.3.3, 384k RF grappa box, -bonded cpu

Launch overheads

• Know all your runtimes!

• Runtime optimizations to avoid extra API calls
• Runtime optimizations in general
• Using extensions to give hint to the runtime
• Changing scheduling code to minimize GPU APIs on critical path
• JITting all relevant kernel flavors
• Submitting all at once: SYCL Graphs

2023-09-21 IXPUG 2023 17

Performance-portability challenges

• Consistent maintenance with software stack in flux
• New developments of both AdaptiveCpp and oneAPI

• Supported standard features, deprecations,
defaults, environment variables…

• But at least it’

• Especially when relying on extensions
• E.g.: oneAPI queue priority extension: just what we need!

• Supported only with LevelZero backend, not hardware support

• CMake / build infrastructure
• User-facing documentation

2023-09-21 IXPUG 2023 18

Performance-portability benefits

SYCL vs. vendor-specific APIs:

• Reduced code duplication
• Most code is not device-specific

• Easier feature enablement
• Different sanitizers and profilers

2023-09-21 IXPUG 2023 19

Performance-portability benefits

Multiple runtimes:

• Keeping the code standard compliant
• Future-proofing
• Finding runtime bugs

• Having the choice when thing don’t work as planned
• Stress-testing the scheduling code

• Dealing with inefficient is never fun, but it has upsides
• Found synchronization bugs in both SYCL and CUDA backends

2023-09-21 IXPUG 2023 20

Looking into the future

• Continuing collaboration with oneAPI and AdaptiveCpp teams
• SYCL Graphs
• Refactoring for shared memory architectures
• GPU-initiated MPI
• Stream-aware MPI

• Performance-portability with SYCL does not come for free,
but it works, production-ready, and the benefits are worth it!

2023-09-21 IXPUG 2023 21

Acknowledgements

• Intel Corporation
• AMD for sharing their HIP port
• Mark Abraham, Heinrich Bockhorst, Roland Schulz (Intel)
• Aksel Alpay (Heidelberg University Computing Centre)
• GROMACS dev team, especially Szilárd Páll

• Get in touch: andreyal@kth.se

2023-09-21 IXPUG 2023 22

	Slide 1
	Slide 2: GROMACS
	Slide 3: Molecular dynamics: science at 1000 fps
	Slide 4: GROMACS
	Slide 5: Molecular dynamics: science at 1000 fps
	Slide 6: Molecular dynamics: science at 1000 fps
	Slide 7: GROMACS: GPU acceleration evolution
	Slide 8: Supported hardware
	Slide 9: Shoehorning SYCL into legacy code
	Slide 10: Shoehorning SYCL into legacy code
	Slide 11: Shoehorning SYCL into legacy code
	Slide 12: Performance-portability challenges
	Slide 13: Launch latency challenges
	Slide 14: Launch overheads
	Slide 15: Launch overheads
	Slide 16: Launch overheads
	Slide 17: Launch overheads
	Slide 18: Performance-portability challenges
	Slide 19: Performance-portability benefits
	Slide 20: Performance-portability benefits
	Slide 21: Looking into the future
	Slide 22: Acknowledgements

