GYCL. GROMACS

SYCL for Performance and Portability:
A Molecular Dynamics Case Study

Andrey Alekseenko

KTH Royal Institute of Technology & Scilifelab
Stockholm, Sweden

GROMACS

* Open-source molecular dynamics engine

* High-performance for a wide range of modeled systems
* From 10“ to 10? particles

* ...and on a wide range of platforms
* x86-64, ARM, POWER, RISC-V
* 11 SIMD backends
« AMD, Apple, Intel, and NVIDIA GPUs; Intel Xeon Phi
* Windows, MacQS, BSD, included in many Linux distros

2023-09-21 IXPUG 2023

Molecular dynamics: science at 1000 fps

* [terative problem

* One step ~1fs, need to simulate pus to ms
« 102-10"¢ steps

Non-bondedpair F]

1 z PME F

‘ _ [Domain decomp]_ -——
X‘ Bonded F
Other F
Pall et al., J. Chem. Phys. 153, 134110 (2020)

Pair search
2023-09-21 IXPUG 2023 3

HTEEET AN

el Integration

\\“'/‘/

https://aip.scitation.org/doi/abs/10.1063/5.0018516

GROMACS

 Main language: C++17
* 468k lines of C++ code
« With a bit of legacy (first release: 1991)

* MPI for inter-node parallelism
* OpenMP for multithreading
* SIMD for low-latency operations on CPU

* GPU offload for high-throughput operations
« CUDA: NVIDIA GPUs
* OpenCL: AMD, Apple, Intel, NVIDIA GPUs
 SYCL: AMD, Intel, NVIDIA GPUs

2023-09-21 IXPUG 2023

Molecular dynamics: science at 1000 fps

* [terative problem

* One step ~1fs, need to simulate pus to ms
« 102-10"¢ steps

Non-bondedpair F]

1 z PME F

‘ _ [Domain decomp]_ -——
X‘ Bonded F
Other F
Pall et al., J. Chem. Phys. 153, 134110 (2020)

Pair search
2023-09-21 IXPUG 2023 5

HTEEET AN

el Integration

\\“'/‘/

https://aip.scitation.org/doi/abs/10.1063/5.0018516

2023-09-21

Molecular dynamics: science at 1000 fps

CPU

Pair-search &

MPI comm: 3 domain-decomposition ‘ MPI comm:
receive non- every 10-250 steps ! send non-
................................. e -
: ' :
: ' MD step : ;
1 1 []
: {4 DD . £1EIAAAA 3D FET ' ¢ & constraint ;
' y:i comm 1 "" iiicomm . ¥:comm '
!_ Domain Pair \/ Wait | | gt Integration :
.- F T EEEErEE - — Other FH non- . ——p-0--
decomp.| | search FHE e T iocal £ A ezl 2 A Constraints
a 7 x b L L
N = €18 3 v
Tz 2 | e S T
a|s 5 8
™~ c o
= o g =)
|__QC_8;| ---------------------- LISt ---l [I B | preempted Local non_bonded F — ROIlmg - Clear i
stream pl’uning by non-local kernel prune buffers
Non-local * Non-locall
stream (Righ priority) =~ """ TTTTTTTTT I T | g = >
Average CPU-GPU overlap:
70-90% per step
Pall et al., J. Chem. Phys. 153, 134110 (2020)
IXPUG 2023 6

https://aip.scitation.org/doi/abs/10.1063/5.0018516

GROMACS: GPU acceleration evolution

 Designed for CUDA (~2010)
 Multiple in-order queues
 Manually-managed USM memory
* Explicit event-based synchronization

« OpenCL added for AMD GPUs (~2014)

* \With compatibility layer to reduce host code duplication
 Intel GPU support added in ~2018

* SYCL added for Intel GPUs via oneAPI (~2021)
* Reusing the same compatibility layer
* Later to hipSYCL/AdaptiveCpp and NVIDIA and AMD GPUs (~2022)

Supported hardware

* Primary targets:
 AMD CDNAZ2 GPUs with AdaptiveCpp/hipSYCL
* Intel Xe-HPC GPUs with oneAPI

* Secondary targets:
* Other AMD GPUs with oneAPl and AdaptiveCpp
* Other Intel GPUs with oneAPI

* Should work:
* NVIDIA GPUs with oneAPl and AdaptiveCpp

Shoehorning SYCL into legacy code

* Prior to SYCL2020: only buffers/accessors
* WWrapper to use buffers a la USM

* With SYCL2020: USM-only
* |dentical code logic with CUDA/OpenCL
* Accessors lead to register spills
* Have the data copies and multiple streams anyway

* Only difference: need context for pinned host allocations

Shoehorning SYCL into legacy code

CUDA: Barrier-like events; no such thing in SYCL standard
1. Refactor code to use returned events

2. Use extensions
» ext_oneapi_submit_barrier, HIPSYCL_EXT_ENQUEUE_CUSTOM_OPERATION
* Better mapping to underlying CUDA/HIP model

* Reduced launch cost
» AdaptiveCpp: HIPSYCL_EXT_COARSE_GRAINED_EVENTS
« oneAPI: waiting for https://github.com/KhronosGroup/SYCL-Docs/issues/404

3. Track last returned event in our queue wrapper
* Might be needed for oneAPI's Immediate command lists / SYCL Graphs

https://github.com/KhronosGroup/SYCL-Docs/issues/404

Shoehorning SYCL into legacy code

e External libraries: FFT, GPU-aware MPI

* Native SYCL libraries only available for Intel hardware:
* IntelMPI; oneMKL, BBFFT

* With USM, native ones work fine via interop!
 OpenMPI, MPICH; cuFFT, rocFFT, heFFTe, vkFFT

* Required effort: CMake and thin wrapper/launcher
* A lot duplication for FFT

Performance-portability challenges

e It's all LLVM, so not far from native, but
* Performance tuning with software stack in flux

* Kernel performance is usually not a huge problem

 AoS->50A to improve register allocation on Xe-HPC

» 2.4x performance improvement for some kernel flavors
* No impact on CDNA (gfx908)

* On CDNA2 with ROCm 5.3: ~10% performance loss with SoA
« ROCm 5.5: further ~10% loss
* SOA—>A0S resolves most (not all) regressions with ROCm 5.5

Launch latency challenges

 MD is often about strong scaling

 Compute and data transfers get faster
e Latency stays ~the same

 Communications often on the critical path
* CPU can do useful work too

Launch overheads

Percentage of time main thread spends launching GPU tasks (1 rank)

(e0]
o

~J
o

(@)
o

(¥
o

LevelZero, batched

= ovelZero, immediate

w
o

e (QpenCL

Launch GPU ops., %
i
o

N
o

—_
o

o

0 100 200 300 400 500 600 700 800
System size, k atoms

Intel Xeon 8480+, IxPVC 1100, oneAPI 2023.2, PME grappa box, -ntomp 6 -bonded gpu

2023-09-21 IXPUG 2023

14

Launch overheads

Percentage of time main thread spends launching GPU tasks (8 ranks)

60
50
X
4 40
Q
o
T 30
5 = 0oneAPI
S = AdaptiveCpp
c
= 20 Native HIP
T o
10
0
0 500 1000 1500 2000 2500 3000

System size, k atoms

AMD Epyc 7/A53, 8xMI250X, ROCm 5.3.3, RF grappa box, -ntomp 6 -bonded gpu

2023-09-21 IXPUG 2023

15

Launch overheads

Performance depending on CPU usage (8 ranks)
100

90 \
80

70

60 = 0oneAPI
= AdaptiveCpp

\ Native HIP

50

40

Achieved performance, %

30

20
6 8 10 12 14 16

OpenMP threads per rank

AMD Epyc 7/A53, TxMI250X, ROCm 5.3.3, 384k RF grappa box, -bonded cpu

2023-09-21 IXPUG 2023

Launch overheads

* Know all your runtimes!

* Runtime optimizations to avoid extra API calls

* Runtime optimizations in general

* Using extensions to give hint to the runtime

* Changing scheduling code to minimize GPU APIs on critical path
* JITting all relevant kernel flavors

* Submitting all at once: SYCL Graphs

Performance-portability challenges

 Consistent maintenance with software stack in flux

* New developments of both AdaptiveCpp and oneAPI

» Supported standard features, deprecations,
defaults, environment variables...

e But at least it

e Especially when relying on extensions

* E.g.: oneAPI queue priority extension: just what we need!
* Supported only with LevelZero backend, not hardware support

 CMake / build infrastructure
* User-facing documentation

Performance-portability benefits

SYCL vs. vendor-specific APls:

* Reduced code duplication
* Most code is not device-specific

e Easier feature enablement
 Different sanitizers and profilers

Performance-portability benefits

Multiple runtimes:

* Keeping the code standard compliant
* Future-proofing
* Finding runtime bugs

* Having the choice when thing don't work as planned

 Stress-testing the scheduling code
* Dealing with inefficient is never fun, but it has upsides
* Found synchronization bugs in both SYCL and CUDA backends

Looking into the future

* Continuing collaboration with oneAPI and AdaptiveCpp teams
* SYCL Graphs
» Refactoring for shared memory architectures

e GPU-initiated MPI
* Stream-aware MPI

* Performance-portability with SYCL does not come for free,
but it works, production-ready, and the benefits are worth it!

Acknowledgements

* Intel Corporation

 AMD for sharing their HIP port

* Mark Abraham, Heinrich Bockhorst, Roland Schulz (Intel)
« Aksel Alpay (Heidelberg University Computing Centre)
 GROMACS dev team, especially Szilard Pall

* Get in touch: andreyal@kth.se

	Slide 1
	Slide 2: GROMACS
	Slide 3: Molecular dynamics: science at 1000 fps
	Slide 4: GROMACS
	Slide 5: Molecular dynamics: science at 1000 fps
	Slide 6: Molecular dynamics: science at 1000 fps
	Slide 7: GROMACS: GPU acceleration evolution
	Slide 8: Supported hardware
	Slide 9: Shoehorning SYCL into legacy code
	Slide 10: Shoehorning SYCL into legacy code
	Slide 11: Shoehorning SYCL into legacy code
	Slide 12: Performance-portability challenges
	Slide 13: Launch latency challenges
	Slide 14: Launch overheads
	Slide 15: Launch overheads
	Slide 16: Launch overheads
	Slide 17: Launch overheads
	Slide 18: Performance-portability challenges
	Slide 19: Performance-portability benefits
	Slide 20: Performance-portability benefits
	Slide 21: Looking into the future
	Slide 22: Acknowledgements

