
Scaling Collectives on Large Clusters of Intel(R) Architecture
Processors

Masashi Horikoshi
Software and Solutions Group, Intel

K.K.
masashi.horikoshi@intel.com

Larry Meadows
Data Center Group, Intel Corporation,

USA
lawrence.f.meadows@intel.com

Tom Elken
Data Center Group, Intel Corporation,

USA
tom.elken@intel.com

Pradeep Sivakumar
Data Center Group, Intel Corporation,

USA
pradeep.sivakumar@intel.com

Edward Mascarenhas
Data Center Group, Intel Corporation,

USA
edward.mascarenhas@intel.com

James Erwin
Data Center Group, Intel Corporation,

USA
james.erwin@intel.com

Dmitry Durnov
Software and Solutions Group, Intel

Russia
dmitry.durnov@intel.com

Alexander Sannikov
Software and Solutions Group, Intel

Russia
alexander.sannikov@intel.com

Toshihiro Hanawa
Information Technology Center, The

University of Tokyo
hanawa@cc.u-tokyo.ac.jp

Taisuke Boku
Center for Computational Sciences,

University of Tsukuba
taisuke@cs.tsukuba.ac.jp

ABSTRACT
This paper provides results on scaling Barrier and Allreduce to 8192
nodes on an cluster of Intel® Xeon Phi™ processors installed at
the University of Tokyo and the University of Tsukuba. We will
describe the effects of OS and platform noise on the performance
of these collectives, and provide ways to minimize the noise as well
as isolate it to specific cores. We will provide results showing that
Barrier and Allreduce scale well when noise is reduced. We were
able to achieve a latency of 94 usec (7.1x speedup from baseline) or
1 rank per node Barrier and 145 usec (3.3x speedup) for Allreduce
at the 16 byte (16B) message size at 4096 nodes.

CCS CONCEPTS
•Networks→Networkperformance analysis; • Software and
its engineering→ Scheduling;

KEYWORDS
MPI, Collectives, Network performance

ACM Reference Format:
Masashi Horikoshi, Larry Meadows, Tom Elken, Pradeep Sivakumar, Ed-
ward Mascarenhas, James Erwin, Dmitry Durnov, Alexander Sannikov,
Toshihiro Hanawa, and Taisuke Boku. 2018. Scaling Collectives on Large

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IXPUG’18, January 2018, Tokyo, Japan
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Clusters of Intel(R) Architecture Processors. In Proceedings of IXPUG Work-
shop HPC Asia (IXPUG’18). ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Oakforest-PACS (OFP): OFP is a supercomputer system introduced
by Fujitsu and the Joint Center for Advanced HPC[4, 5], which
was established by the University of Tokyo and the University
of Tsukuba. The system comprises 8,208 nodes with a 68-core
Intel® Xeon Phi™ 7250 (previously code-named Knights Landing,
and referred to as KNL) CPU, 96 GB of DDR4 RAM, and 16 GB
of stacked 3D MCDRAM. Intel® Omni-Path Architecture (OPA)
fabric provides a 100-Gbps interconnection between nodes in a full
bisection bandwidth fat tree. OFP is the largest KNL and OPA fabric
cluster that has been installed in the field and ranked 9th in the Top
500 list (November 2017) with peak performance of 24.9 PFLOPS.
The computational nodes are using CentOS 7.2 as an operating
system. KNL has four hardware threads, known as Intel® Hyper-
Threading (HT) Technology. In daily operation, OFP enables HT
in the system BIOS. OFP also has a Lustre file system provided by
DataDirect Networks (DDN) SFA14KE and burst buffer by DDN
IME14K with Intel® Xeon® E5-2600 v4 CPUs powering the Object
Storage Server (OSS), Meta-data Server (MDS), and IME (Infinite
Memory Engine, aka burst-buffer) nodes.

One important performance metric for OFP is the performance
of Message Passing Interface (MPI) Barrier and small-data MPI
Allreduce at large scale. When we measured the performance of
these collectives, we observed two problems:

(1) Performance of Barrier and 16B Allreduce showed run to
run variability at large node counts

(2) These collectives did not scale well to 4096 and 8192 nodes

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


IXPUG’18, January 2018, Tokyo, Japan M. Horikoshi et al.

group1 group2 group3 group4
0

100

200

300

400

500

600

La
te
nc
y
(u
se
c)

16B Allreduce

group1 group2 group3 group4

Barrier

run1
run2
run3

Groups of 2048 Nodes, 1 rank/node

Figure 1: Run-to-run variability.

In this paper we show the initial performance and performance
variability, describe system settings and software changes to im-
prove performance, and show the current performance results.
Though there are many works historically to observe and analyses
MPI collective operations, and propose ways on large supercomput-
ers in order to scale at large node counts, those works[2, 3, 6] were
done on multi-core processor systems connected by InfiniBand
or proprietary interconnect. This work reports an initial work on
latest modern many core processor and interconnect. Finally, we
describe ongoing work to further improve performance.

2 INITIAL RESULTS
This section shows baseline measurements on OFP prior to the
tuning exercise. We used three different versions of Intel® MPI Li-
brary, depending on what was available at the time the experiments
were run: 2017 Update 3 pre-release, 2017 Update 3 production, and
2019 Update 1 technical preview.1 Figure 1 shows the run to run
variability. The 8192 nodes were split into 4 groups of 2048 nodes2,
and the collective benchmarks run three times on each. We would
expect each run in each group to show approximately the same
latency, but they are very different. The group-to-group variance is
probably insignificant, we expect that it is simply due to insufficient
sample size. We hypothesize that the wide variance is due to OS
noise.

Figure 2 3 shows the scaling curve as we increase the number of
nodes, while maintaining one rank per node. The ideal scaling is
loд2(N ), where N is the number of ranks/nodes. Here the hypoth-
esis is that the OS noise increases non-linearly as the number of
nodes increases.

1We hope to be able to rerun experiments with a single MPI library.
2There is no special significance to the grouping
3We have no good explanation for the substantially worse Barrier scaling at large node
counts

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Number of nodes

0

200

400

600

800

La
te
nc
y
(u
se
c)

Collective Scaling, 1 rank/node

Barrier
16B Allreduce
Allreduce Ideal

Figure 2: Collective scaling.

3 INITIAL INVESTIGATION
We began by running the MPI collectives in a loop and recording
the time for each iteration on each rank using the fine-grained
RDTSC timer available on the OFP nodes, as shown here:
MPI_Barrier(MPI_COMM_WORLD);

tscs [0] = _rdtsc ();

for (int i = 0; i < ntimes; ++i) {

MPI_Barrier(MPI_COMM_WORLD);

tscs[i+1] = _rdtsc ();

}

report(rank , nranks , ntimes , tscs , benchmark , 0);

This method allows us to see the variance for each call to the collec-
tive on each rank with very little overhead. The report function
computes descriptive statistics and optionally saves the time for
each collective call on each rank for later analysis.

Figure 3 is a histogram of the barrier time in cycles from a single
node for a run on 24 nodes for 100,000 iterations. The mean time is
29,621 cycles, the minimum time is 19,670 cycles, and the maximum
time is 2,474,458 cycles. We expect that the extreme excursions
from the mean are due to OS noise 4

4 CAUSES OF VARIANCE
We used tools such as ps, top and kernel ftrace to monitor fre-
quency using the KNL hardware counters, and detailed plotting
to look for patterns in the iteration-to-iteration variance, and de-
termined several factors that were causing some iterations to take
much longer than others. There are three main sources of variance:

Frequency Transition: The processors on OFP compute nodes
run at nominal 1.4GHz frequency. There are two possible turbo
frequencies: multi-tile turbo can increase to 1.5GHz, and single-
tile turbo can increase to 1.6GHz. Frequency transitions can cause
the processor to stall for many microseconds. We determined that
transitions between single- and multi-tile turbo were occurring
frequently enough to result in significant delays in some iterations.

4Extensive investigation using kernel tracing and correlation with per-iteration times-
tamps confirm this; unfortunately the margin is too narrow to contain the details.



Scaling Collectives on Large Clusters of Intel(R) Architecture Processors IXPUG’18, January 2018, Tokyo, Japan

105 106
Barrier time (cycles)

100

101

102

103

104

105

co
un

t

Histogram of Barrier, 100,000 iterations, 24 nodes, 1 rank/node

Figure 3: Barrier Histogram.

Periodic MWAIT Wake-up: Linux uses the MONITOR and
MWAIT instructions on idle hardware threads. MONITOR arms
a cache line, and MWAIT causes the processor to enter a deep
sleep state until that cache line is touched by another thread. KNL
forces a periodic wake-up of hardware threads in an MWAIT state
10 times per second. When this wake-up occurs, the OS runs the
scheduler to see if there is any work for the thread. Again, this
wake-up can take many microseconds, and can additionally cause
frequency transitions on the entire processor.

OS Work: The OS is constantly running daemons, taking hard-
ware interrupts, and performing other tasks that are unrelated to
the running application. When a thread performing application
work is interrupted to perform other work, or when another other-
wise idle thread on the same core or tile is awakened to perform
OS work, the application thread will be delayed.

It is useful to consider the impact of unexpected delays on MPI
collectives at scale. In this case we are timing collectives with min-
imal data transfer, so the total time is completely determined by
latency. We can model the collective operation as a series of loд2(N )

steps, whereN is the number of nodes (and ranks since we are using
one rank per node). Each step on each rank is a small-data exchange
between the local rank and some remote rank (recursive doubling,
as described in Thakur and Gropp’s book [8]). Therefore theoretical
performance is loд2(N ) ∗ L where L is the latency for a small-data
exchange between two nodes. There is also an addition of switch
hop latency per reduction step, but this is algorithm dependent and
a secondary effect which is beyond the scope of this paper.

Figure 4 shows the results of a simulation of recursive doubling
by using the Bernoulli case described in Agarwal et al.’s work. We
use the measured value of 3.45 usec (for two-node barrier) for the
latency L, and inject simulated noise of 14 usec (20,000 clocks 5 at
1.4GHz) at each step with probability p. The line for p = 0 is the
ideal performance. It is clear that even a small amount of OS noise
has substantial impact.

5A value chosen based on non-scientific sampling of many kernel traces

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Number of Nodes

0

20

40

60

80

100

120

140

La
te
nc
y
(u
se
c)

Simulated Barrier Time vs. Probability of 20k-clock Noise

p=0
p=0.001
p=0.01
p=0.1

Figure 4: Simulated Barrier Latency.

5 REMEDIES
Periodic MWAIT wake-up was removed by adding the kernel boot
parameter idle=halt. This causes idle hardware threads to execute
a HLT instruction rather than using MONITOR/MWAIT. This also
prevents idle cores from entering deep sleep states, which in turn
has the effect of preventing single-tile turbo and thus eliminates
most of the frequency transitions. This does have two drawbacks:
completely idle power consumption is increased because the pack-
age cannot enter deep sleep, and the time to start an idle hardware
thread is slightly increased.

One large source of OS noise was removed by adding the ker-
nel boot parameter nohz_full=2-67,70-135,138-203,206-271
(so-called tickless mode). This disables the OS periodic timer inter-
rupt (normally 1000 Hz) on all but the first tile. Applications must
additionally use some mechanism to avoid running on tile 0 (e.g.
taskset, numactl and so on). Using the Intel® MPI Library on OFP,
set:
I_MPI_PIN_PROCESSOR_EXCLUDE_LIST=0,1,68,69,136,137,204,205

An additional OS noise source turned out to be periodic wake-ups
by Lustre filesystem daemons. We avoid this by restricting Lustre
daemons to tile 0 by modifying /etc/modprobe.d/lustre.conf
to include the lines:
options libcfs cpu_pattern="0[0,68,136,204],1[1,69,137,204]"
options libcfs cpu_npartitions=2

This is not an ideal solution because it restricts the number of Lustre
threads and many threads are needed to saturate bandwidth. Future
versions of Lustre will not require this parameter[7].

We added the boot parameter intel_pstate=disable to use
the older acpi-cpufreq driver. The default intel_pstate driver
schedules periodic timer interrupts to determine the current state of
the hardware threads in the system; we do not require this function-
ality. Newer versions of intel_pstate have the ability to disable
this periodic checking.

The MPI and PSM2 runtimes poll for message completions. Nor-
mally they will poll for a short time and then make a system call to
sched_yield. If the message becomes available while the kernel



IXPUG’18, January 2018, Tokyo, Japan M. Horikoshi et al.

0

200

400

600

800

La
te
nc
y
(u
se
c)

Barrier

HT on
HT off
HT on iMPI 2019
Baseline

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Number of nodes

0

100

200

300

400

500

La
te
nc
y
(u
se
c)

16B Allreduce

HT on
HT off
HT on iMPI 2019
Baseline

Figure 5: Final Results.

is processing the system call then additional latency is introduced.
We reduce the effect of these items with the following environment
variables:
PSM2_YIELD_SPIN_COUNT=10000
I_MPI_COLL_SHM_PROGRESS_SPIN_COUNT=100000

6 RESULTS
Our results are summarized in Figure 5.We include the baseline data
from Figure 2, and three different runs after applying the tunings
mentioned in the previous section. The three runs were with HT
enabled, HT disabled, and HT enabled with the Intel MPI 2019 tech
preview release.

Note that these runs were performed at different times with
slightly different versions of the MPI library, as we were able to
obtain dedicated access to all or part of OFP. This is also the reason
that not all node counts are available for all runs.

Initially we booted with HT disabled, which prevents any other
activity on the core running the collective process (unless the pro-
cess itself is interrupted). However, production use of OFP requires
that HT be enabled. The initial runs with HT on were much better
than the baseline, but still not as good as the runs with HT off.
The 8192 node allreduce result is still less than ideal. We suspect
there may be some remaining noise sources that become important
during larger scale runs.

After much tuning by the Intel MPI developers, we were able to
meet (for barrier) or almost meet (for allreduce) the performance of
the runs with HT off. Unfortunately we were able to get only one
4096-node run with the tuned MPI library.

The MPI tuning was related to reducing instructions executed in
the collective code itself, not to OS or platform noise. We therefore
expect that a run with HT off using the improved MPI implementa-
tion would give even better results.

7 CONCLUSION
We have demonstrated that OS and platform noise can have very
large effects on small-data MPI collectives as the number of nodes

increases. The initial estimate for collective performance did not
account for this factor. After the efforts described in this paper we
were able to exceed the initial estimates for 4096 nodes, even with
HT enabled, as summarized in this table:

Collective Estimate(us) Baseline(us) Optimized(us)
barrier 105 671 94

16B allreduce 160 485 145
Work is ongoing and it is expected that we will get access to run

these benchmarks at 8192 nodes with the important idle=halt and
HT disabled settings using the latest optimized runtime libraries.
The data for allreduce shows that there is still some noise with
HT enabled. Since progressively smaller OS noise has substantial
impact with larger scaling, it is possible we will need to find and
remove other areas of noise. In the case of Multi ranks per node
will also be a future work.

ACKNOWLEDGMENTS
Part of the computational resource of the Oakforest-PACS was
awarded by the "Large-scale HPC Challenge" Project, JCAHPC
(Joint Center for Advanced High Performance Computing). We
thank the faculty and staff of JCAHPC, as well as the engineers
at Fujitsu (Computational Science and Engineering Solution DIV.,
Technical Computing Solutions Unit) and Intel, particularly Profes-
sor Kengo Nakajima (The University of Tokyo), Yoshio Sakaguchi
(Fujitsu), Kohta Nakashima (Fujitsu Laboratories), AlexeyMalhanov
(Intel) and John Pennycook (Intel)

REFERENCES
[1] Saurabh Agarwal, Rahul Garg, and Nisheeth K. Vishnoi. 2005. The Impact of Noise

on the Scaling of Collectives: A Theoretical Approach. Springer Berlin Heidelberg,
Berlin, Heidelberg, 280–289. https://doi.org/10.1007/11602569_31

[2] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2010. Characterizing
the Influence of System Noise on Large-Scale Applications by Simulation. In
Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’10). IEEE Computer Society,
Washington, DC, USA, 1–11. https://doi.org/10.1109/SC.2010.12

[3] Masashi Horikoshi, Yutaka Ueshima, Keiji Kubo, Daisuke Wakabayashi, and Kat-
sunobu Nishihara. 2005. Performance Evaluation of HP AlphaServer SC system.
In Journal of IPSJ HPCS 2005 (HPCS ’05). IPSJ, Japan, 65–72.

[4] JCAHPC. 2016. JCAHPC, Online. (2016). http://jcahpc.jp/eng/index.html.
[5] Oakforest-PACS. 2016. Oakforest-PACS Supercomputer System, Online. (2016).

http://www.cc.u-tokyo.ac.jp/system/ofp/index-e.html.
[6] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. 2003. The Case of the

Missing Supercomputer Performance: Achieving Optimal Performance on the
8,192 Processors of ASCI Q. In Proceedings of the 2003 ACM/IEEE Conference on
Supercomputing (SC ’03). ACM, New York, NY, USA, 55–. https://doi.org/10.1145/
1048935.1050204

[7] Intel HPDD Code Review site. 2017. LU-9441 pltrpc: don’t wakeup on 1 second
intervals, Online. (2017). https://review.whamcloud.com/#/c/28496.

[8] Rajeev Thakur andWilliam D. Gropp. 2003. Improving the Performance of Collective
Operations in MPICH. Springer Berlin Heidelberg, Berlin, Heidelberg, 257–267.
https://doi.org/10.1007/978-3-540-39924-7_38

https://doi.org/10.1007/11602569_31
https://doi.org/10.1109/SC.2010.12
http://jcahpc.jp/eng/index.html
http://www.cc.u-tokyo.ac.jp/system/ofp/index-e.html
https://doi.org/10.1145/1048935.1050204
https://doi.org/10.1145/1048935.1050204
https://review.whamcloud.com/#/c/28496
https://doi.org/10.1007/978-3-540-39924-7_38

	Abstract
	1 Introduction
	2 Initial Results
	3 Initial Investigation
	4 Causes of Variance
	5 Remedies
	6 Results
	7 Conclusion
	Acknowledgments
	References

