
CSC	–	Finnish	expertise	in	ICT	for	research,	education	and	public	administration	

GPAW	performance	optimisation	and	
energy	consumption	on	KNLs	

	Martti	Louhivuori,	CSC	

IXPUG	spring	2018,	Bologna	2018-03-05	



GPAW	

• Density-functional	theory	(DFT)	program	for	ab	initio	
electronic	structure	calculations	

• Code	written	mostly	in	Python	
o computational	kernels	in	C	
o leverages	external	libraries	(ScaLAPACK	etc.)	

• Parallelisation	based	on	message-passing	(MPI)	

• Code	freely	available	under	GPL:	
	https://gitlab.com/gpaw/gpaw	

C60	fullerenes	next	to	a	Pb	sheet	



PRACE	Accelerator	Benchmarks	

• Unified	European	Applications	Benchmark	Suite	(UEABS)	
developed	by	PRACE	contains	now	benchmarks	also	aimed	at	
accelerators	

•  For	GPAW	there	are	two	benchmarks:	
o Small	case:	Carbon	Nanotube	(up	to	~10	nodes)	
o Large	case:	Copper	Filament	(up	to	~100	nodes)	

• Both	are	ground	state	calculations	in	vacuum,	but	the	Copper	
Filament	benchmark	is	more	computationally	intensive	(and	
able	to	scale	up	better)	

www.prace-ri.eu/ueabs/	



Performance	and	Optimisation	



Hardware	

• ARCHER	Knights	Landing	Testing	and	Development	Platform	
by	Cray	
o single	64-core	KNL	processor	(Intel	Xeon	Phi	7210)	running	at	1.3GHz	at	
each	node	

o 96GB	of	standard	memory	per	node	
o 16GB	of	high-bandwidth	MCDRAM	memory	per	KNL	
o 12	nodes	in	total,	of	which	8	in	cache	mode	and	4	in	flat	mode	

• Results	compared	to	CSC's	Sisu	supercomputer	(Cray	XC40)	
o two	12-core	Haswell	CPUs	(Intel	Xeon	E5-2690v3)	running	at	2.6GHz	at	
each	node	

o 64GB	of	standard	DDR4	memory	per	node	



Compiling	Python	and	GPAW	

• ARCHER's	KNL	system	has	Sandy	Bridge	login	nodes,	so	
GPAW	and	the	underlying	Python	stack	need	to	be	built	in	two	
steps	
o Intel	compiler	(17.0.0)	used	for	everything	
o Cray	compiler	wrapper	(cc)	takes	care	of	correct	compiler	options		
(e.g.	-xMIC-AVX512	on	KNLs)	

• Python+	
o target	SNB 	(module	load	craype-sandybridge)	

• GPAW	
o target	KNL 	(module	load	craype-mic-knl)	
o memkind	module	is	needed	to	get	support	for	the	high-bandwidth	
memory 	(module	load	cray-memkind)	



Compiling	Python	and	GPAW	

•  Intel	TBB	+	huge	pages	
o using	huge	pages	together	with	the	memory	allocator	from	Intel	TBB	
(tbbmalloc)	allow	for	more	optimised	memory	allocation	on	KNLs	

o for	GPAW,	performance	increase	is	up	to	5%	
o size	of	huge	pages	is	not	significant	for	GPAW	(2M	pages	were	used)	
o environment	variable	LD_PRELOAD	was	used	to	swap	the	standard	
memory	allocator	with	the	one	from	Intel	TBB	(no	code	modifications!)	



Performance	comparison,	Haswell	vs.	KNL	

• KNLs	faster	than	CPUs	for	the	Copper	Filament	benchmark	
when	using	one	or	two	nodes	

• Compared	to	CACHE	mode,	FLAT	mode	is	over	50%	slower	
(data	not	shown)	

GPAW	runtimes	(in	seconds)	with	n	nodes	

1	 2	 4	 8	

Carbon	Nanotube	 Xeon	E5-2690v3	x2	 242.2	 148.5	 81.1	 55.4	

Xeon	Phi	7210*	 319.9	 206.6	 141.3	 101.3	

Copper	Filament	 Xeon	E5-2690v3	x2	 405.0	 191.5	 86.9	 60.5	

Xeon	Phi	7210*	 323.4	 172.3	 127.0	 80.0	

*using	tbbmalloc	and	2M	huge	pages	
	in	CACHE	/	QUAD	mode	



Code	modifications	

• Profiled	with	VTune	Amplifier	2017	on	KNLs	and	potential	
targets	for	optimisation	were	identified	in	the	C	kernels	
o triple	nested	loops	with	single	step	pointer	incrementations	to	advance	
the	position	of	input	and/or	output	arrays	

• Code	changes:	
o use	OpenMP	SIMD	pragmas	
o use	explicit	indexing	instead	of	pointer	incrementation	OR	do	pointer	
incrementation	in	larger	blocks	at	an	upper	loop	level	

• Allowed	for	better	vectorisation	of	the	loops	by	the	compiler	

• Obsolete,	unnecessary	code	sections	were	also	identified	in	
the	iterator	and	were	removed	

Merged	to	code	base	

Merged	to	code	base	



Example	code	modifications	to	a	kernel	

					for	(int	i1	=	0;	i1	<	s->n[1];	i1++)	
							{	
									for	(int	i2	=	0;	i2	<	s->n[2];	i2++)	
											{	
													T	x	=	0.0;	
													for	(int	c	=	0;	c	<	s->ncoefs;	c++)	
															x	+=	aa[s->offsets[c]]	*	s->coefs[c];	
													*bb++	=	x;	
													aa++;	
											}	
									aa	+=	s->j[2];	
							}	

c/bmgs/fd.c	

vectorisable?	 vectorisable!	



Example	code	modifications	to	a	kernel	

①  Explicit	indexing	in	two	
inner-most	loops	

②  Pointer	incrementation	
at	the	outer	loop	level	

③  OpenMP	SIMD	pragma	
to	guide	vectorisation	
of	the	two	inner-most	
loops	

					for	(int	i1	=	0;	i1	<	s->n[1];	i1++)	
							{	
+#pragma	omp	simd	
									for	(int	i2	=	0;	i2	<	s->n[2];	i2++)	
											{	
													T	x	=	0.0;	
													for	(int	c	=	0;	c	<	s->ncoefs;	c++)	
-														x	+=	aa[s->offsets[c]]	*	s->coefs[c];	
-												*bb++	=	x;	
-												aa++;	
+														x	+=	aa[s->offsets[c]	+	i2]	*	s->coefs[c];	
+												bb[i2]	=	x;	
											}	
-								aa	+=	s->j[2];	
+								bb	+=	s->n[2];	
+								aa	+=	s->j[2]	+	s->n[2];	
							}	

c/bmgs/fd.c	

1	

2	

3	



GPAW	runtimes	(in	seconds)	and	performance	increase	with	n	KNLs	

1	 2	 4	 8	

Carbon	Nanotube	 reference	 319.9	 206.6	 141.3	 101.3	

optimised	 269.3	 177.3	 123.2	 91.3	

speed-up	 1.188	 1.165	 1.147	 1.110	

Copper	Filament	 reference	 323.4	 172.3	 127.0	 80.0	

optimised	 280.7	 150.0	 116.1	 74.0	

speed-up	 1.152	 1.149	 1.094	 1.081	

Effects	of	OpenMP	SIMD	pragmas	and	explicit	indexing	

Reference	on	CPUs	 1	 2	 4	 8	

Carbon	Nanotube	 Xeon	E5-2690v3	x2	 242.2	 148.5	 81.1	 55.4	

Copper	Filament	 Xeon	E5-2690v3	x2	 405.0	 191.5	 86.9	 60.5	

up	to	15-18%		
speed-up	

load	inbalance	between	
the	MPI	tasks	is	now	the	
main	bottleneck	



GPAW	on	Skylake	

	

• Dual	26-core	Skylake	@	2.1	GHz	(Intel	Xeon	Platinum	8170)	
with	192	GB	of	DDR4	memory	
o HSW:	dual	12-core	Haswell	@	2.6	GHz	(Intel	Xeon	E5-2690v3)	
o KNL:	single	64-core	Knights	Landing	@	1.3	GHz	(Intel	Xeon	Phi	7210)	

• All	results	on	Skylake	and	Knights	Landing	using	tbbmalloc	
and	2M	huge	pages	

GPAW	runtimes	(in	seconds)	on	a	single	SKL	node	compared	to	HSW	and	KNL	

AVX-512	 AVX-512*	 AVX2	 AVX2*	 HSW	 KNL*	

Carbon	Nanotube	 116.2	 102.4	 118.7	 118.3	 242.2	 269.3	

Copper	Filament	 156.8	 153.7	 150.3	 150.1	 405.0	 280.7	
*use	code	optimisations	(OpenMP	SIMDs	&	array	indexing)	



Conclusions	on	performance	

• GPAW	achieves	similar	performance	on	KNLs	as	on	dual-CPU	
Haswell	nodes,	but	with	poorer	scaling	properties	
o Benchmarks	with	higher	computational	burden	fare	better	on	KNLs	and	
also	show	better	scaling	properties	

• Best	performance	achieved	when	using	CACHE	mode	for	
MCDRAM	and	tbbmalloc	with	huge	pages	

• Some	performance	improvement	(up	to	18.8%)	was	achieved	
on	KNLs	by	using	OpenMP	SIMDs	and	array	indexing	on	three	
computational	kernels	

see	full	report	at:	github.com/cschpc/gpaw-on-KNL	



Energy	consumption	



Hardware	and	software	used	for	energy	measurements	

• PRACE	Pre-Commercial	Procurement	(PCP)	for	energy	
efficient	HPC	solutions	
o Atos-Bull	KNL	pilot	system	(at	CINES/GENCI)	ß	
o E4	Power-8/Pascal	pilot	system	(at	CINECA)	
o Maxeler	data-flow	pilot	system	(at	JUELICH)	

• Atos-Bull	KNL	pilot	system	
o 56	Atos-Bull	Sequana	X1210	blades	+	water-cooled	power	
o 168	compute	nodes	with	a	single	68-core	KNL	(Intel	Xeon	Phi	7250)	+	
HDEEM	FPGA	for	energy	monitoring	

• Bull	Energy	Optimizer	(BEO)	
o energy	monitoring	of	the	whole	system	(at	100Hz)	
o HDEEVIZ	may	be	used	for	more	detailed	profiles	(at	1kHz)	



Energy	consumption	&	runtimes	on	PCP-KNL	

• Energy	consumption	seems	to	scale	linearly	with	the	number	of	KNLs	used	

• Absolute	scaling	limit	reached	for	the	Carbon	Nanotube	benchmark	(<	32	KNLs)	

GPAW	energy	consumption	and	runtimes	on	KNLs	with	n	nodes	

1	 2	 4	 8	 16	 32	

Carbon	Nanotube	 energy	(kJ)	 154	 243	 307	 491	 826	 1800	

runtime	(s)	 527.3	 307.2	 187.3	 140.8	 114.8	 118.3	

Copper	Filament	 energy	(kJ)	 159	 205	 255	 352	 615	 1200	

runtime	(s)	 456.5	 214.8	 128.7	 72.0	 49.5	 36.0	

FLAT	/	QUAD	mode	





Conclusions	on	energy	consumption	

• Energy	consumption	seems	to	grow	linearly	with	the	number	
of	KNLs	in	use	
o maximum	energy	efficiency	for	runs	with	only	a	single	KNL	

• Minimum	energy	to	solutions	for	the	PRACE	accelerator	
benchmarks	on	the	PCP-KNL	in	FLAT/QUAD	mode:	
o Carbon	Nanotube: 	(154	+/-	3)	kJ	
o Copper	Filament: 	(159	+/-	3)	kJ	

• Slightly	lower	energy	to	solution	results	expected	for	KNLs	
running	in	CACHE	mode	instead	of	the	FLAT	mode	(simply	due	
to	faster	run	times)	



https://www.facebook.com/CSCfi	

h6ps://twi6er.com/CSCfi	

h6ps://www.youtube.com/c/CSCfi	

h6ps://www.linkedin.com/company/csc---it-center-for-science	

Dr.	Martti	Louhivuori	

HPC	Programming	Support	
CSC	–	IT	Center	for	Science	Ltd.	
	
martti.louhivuori@csc.fi	


