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Python at NERSC



Outline

1. Python enables HPC science at NERSC
Orchestration • Workflows • Analytics • HPC Apps

2. How we help Python users at NERSC
Productivity • Performance

3. Experimental/Observational Science Engagements
Python in NESAP for Data Projects w/Intel



What is NERSC?

The production user facility for high performance 
computing and data for the Department of Energy’s 
Office of Science. 

National Energy Research Scientific Computing Center



NERSC Systems

Name System
Type

Processor 
Type

Speed/Cores 
per Node

Peak 
Performance

# Nodes Aggregate 
Memory

Memory per 
Node

Edison Cray 
XC30

Ivy Bridge 2.4/24 2.57 PF/s 5586 357 TB 64 GB

Cori Cray 
XC40

Haswell 2.3/32 1.92 PF/s 2388 305 TB 128 GB

KNL 1.4/68 28 PF/s 9688 1.1 PB 96+16 GB



7K users, 800 projects, 2K papers 
Advanced Scientific 
Computing Research

Biological & 
Environmental Research

Basic Energy Sciences

Fusion Energy Sciences

High Energy Physics

Nuclear Physics

Small Business Innovation 
Research

~10 billion “NERSC hours” provided to users in 2017.
(2017 Operational Assessment)



Science via Python@NERSC

         Data                    Model                  Residuals

Sky Survey Catalogs for Cosmology

(Dey et al. 2018)

Powering Workflows to
Understand Properties 
of Materials

Modeling Dark Matter and 
Dark Energy

PIC Code for Plasmas and 
High Current Particle Beams

Warp

LHC ATLAS Data 
Processing Workflow

ML/DL



Python in HPC Jobs at NERSC

Around 3% of NERSC hours on Cori in the 
past year easily detected as Python jobs*:

srun -n … python whatever.py … 

This is a lower limit, as users:
● Often make main programs executable
● Use Python in containers to scale up

* Production batch jobs, not use on shared login nodes.



Packages Users Say They Use

* or concurrent.futures

*

2017 NERSC User Survey
656 total respondents
N=336 reporting use (51%)

Users also added:
  Numba
  Healpy



Monitored Imports (Cori)
MODS* Statistics
Recent 30 day period
Compute nodes only
NERSC’s modules only

* MODS = Monitoring of Data Services at NERSC = BI Project in DAS



Python in Edge Services
Data Sharing Across 
Facilities

Interactive Tools

Interfaces to HPC
resources &  workflows

Rich Visualizations and UIs

enables science through . . .



Interactive Supercomputing

Web Browser JupyterHub 
Web Server

Cori Login Node
Notebook 

Server Process
Kernel

Process

Cori Compute Node
Notebook 

Server Process
Kernel

Process

Cori Compute Node

Notebook 
Server Process

Cori Compute NodeCori Compute NodeCori Compute Node
Kernel

ProcessKernel
ProcessKernel

Process

--qos=interactive



NERSC’s Python Strategy

Focus on user productivity.
Support familiar, trusted, up-to-date libraries.
Find ways to put performance in user reach.

Examples:
Threaded libraries: Intel MKL
Support cluster scaling: Cray+mpi4py
Close architecture gaps: Containers



NERSC Python: Anaconda
Most well-known and widely used distribution.
Designed around analytics, statistics, ML/DL.
“Personalized” environments and package manager.
Environments are rapid setup, shareable, & reusable.

2016: MKL added, and Intel upstreams optimizations:
NERSC drops its builds of Python on Cray the same 
year.

Other options for HPC:
Source builds, Spack, etc.



Handling MPI with mpi4py

Cori Aries Interconnect

Cluster parallelism with MPI via mpi4py:
MPI-1/2/3 specification support
OO interface ~ MPI-2 C++ bindings
Point-to-point and collectives
Picklable Python objects & buffers

Build mpi4py & dependents with
Cray MPICH:

python setup.py build --mpicc=cc
python setup.py install

Cray-provided
Compiler wrapper



Containers
and Python go well together at NERSC

Motivations, esp. for data science:
Flexibility Convenience
Consistency Reproducibility

Some Options:
Docker Shifter (~Docker on Cray)
Singularity CharlieCloud

Nice recent blog summary of the state of HPC containers:
https://www.stackhpc.com/the-state-of-hpc-containers.html



“Slow Launch” at Scale
Python’s import is metadata intensive, 
 ⇒ catastrophic contention at scale
 ⇒ it matters where you put your env

Project (GPFS):
For sharing large data files

Scratch (Lustre):
OK, but gets purged periodically!

Common (GPFS): 
RO w/Cray DVS client-side caching
Open to users now, was only staff

Shifter (Docker Containers):
Metadata lookup only on compute
Storage on compute is RAM disk
ldconfig when you build image

Previous 6 months
150 nodes
4800 MPI ranks
import numpy
import astropy

better

worse

[Median launch time incl. MPI_Init()]



Python on Knights Landing
General advice from to users regarding KNL:

● Your code will run without modification

● Expect some refactor if you want best performance

● Fine-grained parallelism to exploit 68 cores/node

● Make aggressive use of the 512-bit vector units

● Structure data to stay in KNL’s 16 GB of MCDRAM



Python on Knights Landing
Translation for Python users.  At least,

● Understand and use numpy array syntax, broadcast 
rules, and scalar/“vector” interfaces to functions.

● Use threaded+vectorized libraries and compiled 
extensions, minimize time outside of using them.

● There may, in fact, be more than one way to do it;
Prepare to rethink algorithms, memory usage, etc.

● Layer use of profiling tools to identify/assess hotspots.



NESAP for Data
NERSC Exascale Science Applications Program for Data:
Users whose applications process, analyze, and/or simulate data sets or 
data streams from experiments and instrumentation supported by DOE 
need help preparing for extreme scale and exascale computing.

Early 
Engagement 

with Code 
Teams

Expanded 
Access to 

KNL + Data 
Ecosystem

Close 
Interactions

with 
Vendors

Postdoc 
Fellowship 
Program

Developer 
Workshops,
“Dungeons”

Training 
Docs, Online 

Modules

Leverage 
Community 

Efforts



Python NESAP for Data Projects

TomoPy (Python & C): 
Tomographic data processing and image reconstruction
PI: Doga Gursoy, Argonne National Laboratory

DESI Pipeline (As Pure Python as Reasonably Possible):
Baryon acoustic oscillations (DESI Project)
PI: Stephen Bailey, Lawrence Berkeley Laboratory

TOAST (Time Ordered Astrophysics Scalable Tools, Python & C++):
Cosmic microwave background data analysis and simulation (CMB S4)
PI: Julian Borrill, Lawrence Berkeley Laboratory

TomoPy DESI TOAST



Framework for analysis of synchrotron tomography data

75% Python, ~25% C/C++

I/O handled via dxchange, HDF5

Modular design
Pre-processing
Image Reconstruction
Post-processing

Parallelism within node: 
multiprocessing 
concurrent.futures

TomoPy    (D. Gursoy, Z. Ronaghi; O. Pavlyk)



TomoPy Optimizations So Far
Library dependencies:
● Intel Python: NumPy, SciPy, scikit-image
● Local builds: fftw, pyfftw, dxchange, dxfile, olefile

Compilation:
● Build TomoPy C extensions with icc
● Target common-avx512 architecture enabling vectorization

Runtime:
● To use multiprocessing on KNL needed to set KMP_AFFINITY=disabled
● Using huge memory pages: gridrec algorithm 30% faster on Haswell, 45% faster on KNL

Code changes, mostly in C layer gridrec algorithm, some preprocessing:
● Appropriate precision (ceilf, sinf, cosf), avoid upcast/downcast if we can
● Replace lroundf(x) with (int)roundf(x) to enable vectorization
● Apply icc-specific vectorization pragmas (Intel Compiler)
● 64-byte aligned memory allocation from X/Open-7 posix standard instead of fftw allocator
● Parallelize FFTs with “many FFT” for more slices at once
● Employ cache blocking to lower miss rate for interpolation step (25% to 4% on KNL)
● Pre-processing: Encapsulated uses of fft, ifft and fft2, ifft2 by replacing direct calls to 

pyfftw.interfaces.numpy functions with calls to wrapper functions

(mostly gridrec algorithm)



TomoPy Gridrec Optimizations

Cores
(HSW)

First 
version

After 
dungeon Final version

1 478 327 309

2 268 175 166

4 149 88 89

8 79 47 47

16 45 26 26

32 27 14 14

Cores
(KNL)

First 
version

After 
dungeon Final version

1 1248 1074 774

2 662 547 397

4 350 275 200

8 182 139 101

16 92 69 52

32 48 36 27

64 26 21 20



DESI Fiber Positioner Petal
1 Exposure = 30 Frames

= 15,000 Traces

Science Purpose: Spectroscopy for Dark Energy science
● 3D map of the Universe over 10 billion years
● Spectra of 10’s of millions of galaxies and quasars
● Create flux-calibrated 1D tables of flux vs wavelength of 

Galaxies, quasars, etc. from 2D CCD image frames

Algorithms and Methods
● Scientific Python stack (NumPy, SciPy, etc.; threaded)
● Linear algebra (esp. Hermitian eigen-decomposition)
● Special function evaluations, fitting functions to data
● MPI (mpi4py) data-parallel processing + Shifter to scale up

Production Requirements
● Real-time pressure to do real-time survey planning each day

DESI [Bailey, Stephey; Pavlyk, Douyeb, Fernandez, Hogan]



DESI Optimization & Scaling

Simulation Code (Simulate Spectra on CCDs): 1.5-1.7x on HSW, multi-node scaling w/MPI
● Numba JIT compilation to speed up 2 lines of expensive matrix slicing
● MPI work to scale up the code:

○ Broadcast/reduce to scatter/gather where best use, complete initial I/O faster
○ Multi-level Comm scheme to optimally fill nodes
○ Scale tests up to 60 nodes so far, will be used in production soon
○ Single exposure (30 frames simultaneously) in 8 minutes
○ Roughly equal performance between multiprocessing and MPI on single node

Main Extraction Code (1D traces from CCD images)
● Main bottleneck is legval in NumPy (scalar/vector args) observed at first Dungeon.
● Precompute legval w/large vector input (not scalar): promising but delicate refactor.
● Also legval itself: 4x speedup with loop unrolling and Numba.
● Using some of the code as a testbed for initial experimenting with PyPy.



TOAST          (T. Kisner, J. Madsen; D. Liu, V. Litvinov)

Cosmic Microwave Background: HPC and Data

(Julian Borrill, LBL)



Preparations for CMB-S4
Future CMB experiments:

10x more detectors
More telescopes
New systematics (weather at different sites)

“TOAST” App Hero Run in June 2017
Simulation and map-making:

50,000 detectors
30X Planck mission data
1 year of simulated observations from Chile
Including effects of atmosphere

Using all of NERSC’s Cori Phase II:
658,784 Intel Xeon Phi (Knights Landing) Cores
Hybrid MPI/OpenMP (150K MPI ranks)
First full-KNL production Shifter (container) job
Hybrid Python/C++

(Julian Borrill, Reijo Keskitalo,
Ted Kisner, LBL)



PyHPC 2018

At SC18!

8th Workshop on Python for 
High-Performance and 
Scientific Computing



Conclusion

Python fills numerous critical roles at HPC scientific 
computing centers like NERSC.

Especially true in experimental/observational sciences, 
data processing/analysis more than analytics for now.

Achieving good Python performance is challenging 
and users (not often HPC-oriented) need to partner 
with center staff and vendors/developers to get it.


