
Sergey Maidanov

Engineering Manager for Intel® Distribution for Python



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why Python?

• Python, Java, R are top 3 languages in job postings for data science and 
machine learning jobs

• https://www.kdnuggets.com/2017/01/most-popular-language-machine-learning-data-science.html

“Python wins the heart of developers across all ages, according to 
our Love-Hate index. Python is also the most popular language that
developers want to learn overall, and 
a significant share already knows it”

2018 Developer Skills Report

https://www.kdnuggets.com/2017/01/most-popular-language-machine-learning-data-science.html


Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why scalability matters in (Data) Science

A TOAST for Next Generation CMB Experiments
Berkeley Lab Cosmology Software Scales Up to 658,784 Knights Landing Cores
According to Kisner, the challenges to building a tool that can be used by the entire CMB community were both 
technical and sociological. Technically, the framework had to perform well at high concurrency on a variety of systems, including 
supercomputers, desktop workstations and laptops. It also had to be flexible enough to interface with different data formats and
other software tools. Sociologically, parts of the framework that researchers interact with frequently had to be written in a high-
level programming language that many scientists are familiar with.



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

What scalability technically means
Hardware and software efficiency crucial in production (Perf/Watt, etc.)

Efficiency = Parallelism
 Instruction Level Parallelism with effective memory access patterns
 SIMD
 Multi-threading
 Multi-node

Roofline Performance Model*

Arithmetic Intensity

SpMVBLAS1

Stencils

FFT

BLAS3 Particle 
Methods

Low High

G
fl

o
p

/s

Peak Gflop/s

* Roofline Performance Model https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/


Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Efficiency = Parallelism

Packages (numpy*, scipy*, 
scikit-learn*, etc.) accelerated 

with MKL, DAAL, IPP

Language extensions for 
vectorization & multi-

threading (Cython*, Numba*)

Composable multi-threading 
with Intel® TBB, OpenMP*, 

and SMP packages

Integration with Big Data 
platforms and Machine 
Learning frameworks

Multi-node parallelism with 
mpi4py* accelerated with 

Intel® MPI*

Mixed language profiling with 
Intel® VTune™ Amplifier

• CPython as interpreter inhibits parallelism but…
• … Overall Python tools evolved far toward unlocking parallelism

Extracting parallelism in Python



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Near to native Python efficiencies

Domain Native
Python 

Efficiency
Linear Algebra (numpy/scipy) MKL BLAS/LAPACK 91%
FFT (numpy/scipy) MKL FFT 85%
Arithmetic & Transcendentals (numpy) MKL VML, ICC SVML 92%
Numba (Black Scholes) - serial ICC 92%
Numba (Black Scholes) - parallel ICC 82%
Scikit-learn DAAL 90%
RNG (numpy) MKL RNG 90%

PythonEfficiency=Python/BestNative*100%. Geomean across representative workloads within domain.

Linear algebra: dot, det, inv, lu; FFT: 1D, 2D, 3D (in-place and out-of-place); Arithmetic & Transcendental: +, -, *, erf, exp, invsqrt, log10; Scikit-learn: cosinedist, corrdist, 
kmeans (fit, predict), linearregr (fit, predict), ridgeregr (fit, predict), SVM (fit, predict); RNG: rand, randn, gamma, beta, randint, poisson, hypergeometric



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

ParallelAccelerator architecture for Numba*

ParallelAccelerator

Numba*

LLVM

Extract shared-memory parallelism

Compile Python/Numpy

Binary code generation

D = A * B + C

parfor i=1:n

t[i]=A[i]*B[i]

parfor i=1:n

D[i]=t[i]+C[i]

parfor i=1:n

t[i]=A[i]*B[i]+C[i]

Recognize parallelism

Fuse loops

*

+

A

B

C

=
D

https://github.com/IntelLabs/parallelaccelerator.jlhttps://github.com/numba/numba

https://github.com/IntelLabs/parallelaccelerator.jl
https://github.com/numba/numba


Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

ParallelAccelerator for Numba - Highlights

With ParallelAccelerator you can

• Basic math and comparisons

• NumPy ufuncs supported in nopython mode

• User-defined ufuncs created with 
numba.vectorize

• Reductions for sum and product

• Array creation np.ones and np.zeros

• Vector-vector and matrix-vector dot products

@numba.jit(nopython=True, parallel=True)

def logistic_regression(Y, X, w, iterations):

for i in range(iterations):

w -= np.dot(((1.0 / (1.0 + np.exp(-Y * np.dot(X, w))) - 1.0) * Y), X)

return w



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

ParallelAccelerator
prange() and numba.stencil

@numba.jit(nopython=True, parallel=True)

def normalize(x):

ret = np.empty_like(x)

for i in numba.prange(x.shape[0]):

acc = 0.0

for j in range(x.shape[1]):

acc += x[i,j]**2

norm = np.sqrt(acc)

for j in range(x.shape[1]):

ret[i,j] = x[i,j] / norm

return ret 

N = 10

GAMMA = 2.2

@numba.jit(nopython=True, parallel=True)

def blur(x):

def stencil_kernel(a):

acc = 0.0

for i in range(-N, N+1):

for j in range(-N, N+1):

acc += a[i,j]**GAMMA

avg = acc/((2*N+1)*(2*N+1))

return np.uint8(avg**(1/GAMMA))

return numba.stencil(stencil_kernel,

neighborhood=((-N,N),(-N,N)))(x) 



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Data Management for Big Data

…

Observations, n

Time

M
e

m
o

ry
 

C
a

p
a

ci
ty

Categorical

Blank/Missing

Numeric

F
e
a
tu

re
s
, 
p

Big Data Attributes Computational Solution

Distributed across different devices •Distributed processing with communication-
avoiding algorithms

Huge data size not fitting into device 
memory

•Distributed processing
•Online algorithms

Data coming in time •Data buffering & asynchronous computing
•Online algorithms

Non-homogeneous data •CategoricalNumeric (counters, histograms, etc)
•Homogeneous numeric data kernels
• Conversions, Indexing, Repacking

Sparse/Missing/Noisy data •Sparse data algorithms
•Recovery methods (bootstrapping, outlier 
correction)

Outlier



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Bridging Storage & Compute

Optimizing storage  ≠ optimizing compute

 Storage: efficient non-homogeneous data encoding for smaller footprint and faster retrieval

 Compute: efficient memory layout, homogeneous data, contiguous access

 Easier manageable for traditional HPC, much more challenging for Big Data

…

Samples, n

V
a
ri
a
b
le

s
, 

p

Storage ComputeMemory

Filtering, 
conversions, 

basic 
statistics

Data 
homogenization 

and blocking

SIMD

ymm1

ymm3

ymm2



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Scikit-learn, Intel® DAAL, pyDAAL, DAAL4Py

…

Observations, n

Time

Intel® MKL 
kernel

F
e
a
tu

re
s
, 
p

Intel® DAAL

pyDAAL

daal4pyScikit-learn

Machine learning for in-
memory homogeneous data

As simple as scikit-learn but 
handles non-homogeneous, 
streaming & distributed data

Powerful low-level API for machine 
learning with non-homogeneous, 
streaming & distributed data

Built upon highly optimized Intel® 
MKL kernels



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Analytics that scales within a node



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

Analytics that scales within a node

1

10

100

1000

10000

Two-Class (Training) Multi-Class (Training) Two-Class (Predict) Multi-Class (Predict)

SVM Classification
Speedup relative to scikit-learn 0.19.1

Synthetic random data, Linear kernel SVM, 10000 rows, 1000 features, low tolerance=10-16, maxiter==106. Intel® Distribution for Python* 
2018 Update 2, scikit-learn 0.19.1. Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz, 2 sockets, 18 cores/socket, HT:2. RAM: 250GB, Turbo mode 
and SpeedStep turned off



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

import daal4py as d4p
file = "kmeans_dense.csv"
dfin = loadtxt(file), delimiter=',')
centroids = d4p.kmeans_init(10, t_method="plusPlusDense")
result = d4p.kmeans(10).compute(dfin, centroids.compute(dfin))

python kmeans.py

Create numpy
array

Parametrize 
algorithm object

Parametrize and 
execute in one line

Processing in-memory dataset loaded from CSV file

Processing distributed dataset with MPI loaded from multiple CSV file

import daal4py as d4p
d4p.daalinit()
files = ["kmeans_dense.csv", …]
dfin = [loadtxt(x, delimiter=',') for x in files]
centroids = d4p.kmeans_init(10, t_method="plusPlusDense", distributed=True)
result = d4p.kmeans(10, distributed=True).compute(dfin, centroids.compute(dfin))

mpirun -n 4 -genv DIST_CNC=MPI python ./kmeans.py

Initialize Multiple input 
arrays/files

Request distributed 
execution

Try it out conda install -c intel/label/test dal4py

Distributed computing as simple as Scikit-learn*



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Multi-node scaling with DAAL4PY

5.56

3.25

1.88

1.24
0.92

0

1

2

3

4

5

6

1 2 4 8 16

ti
m

e
 [

se
c]

Number of nodes

daal4py: k-means

Distributed Scalability

2ppn; fixed input size: 5M observations, 200 features

1.64

0.90

0.49
0.27 0.16

1.68

0.82

0.42 0.23 0.12

1.64 1.68
1.79

1.90
2.05

1.68 1.72
1.81

1.81

1.91

0.00

0.50

1.00

1.50

2.00

2.50

1 2 4 8 16

ti
m

e
 [

se
c]

Number of nodes

daal4py: Linear Regression Training

Distributed Scalability 

1ppn; fixed input size: 48M observations, 256 features

2ppn; fixed input size: 48M observations, 256 features

1ppn; input size per node: 48M observations, 256 features

2ppn; input size per node: 48M observations, 256 features

Configuration Info: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, EIST/Turbo on, 2 sockets, 20 Cores per 
socket, 192 GB RAM, 16 nodes connected with Infiniband, Oracle Linux Server release 7.4; Intel® 
Distribution for Python 2018 Update 1, DAAL4PY (Tech Preview)



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel 
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the 
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent 
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture 
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the 
specific instruction sets covered by this notice.

Notice revision #20110804

17

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY 
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS 
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS 
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY 
RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance 
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any 
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully 
evaluating your contemplated purchases, including the performance of that product when combined with other products.  For more complete 
information visit www.intel.com/benchmarks.  

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of 
Intel Corporation in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks




Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® 
Distribution for 

Python*

Python Vendor 1

Time
Day 1 of the new 

CPU launch

Anaconda 
Cloud*

Intel conda
packages with 
build recipes & 

optimization 
patches

yum apt
Python Vendor 2

Python Vendor 3

Working with 
Python vendors

Working with community to upstream

PRs with optimization 
patches

Wheels for Intel runtimes and 
development packages (MKL, DAAL, 

TBB, etc.)

How we enable ecosystem



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Based on public scikit-learn demo

– Modified variant relies on Intel® Data Analytics 
Acceleration Library (pyDAAL)

Problem being solved:

– Unsupervised learning

– Clusterization of 70,000 MNIST images of 
hand-written decimal digits

– Image 28x28 pixels forms a tuple of 784 pixel values (features) that form 784-
dimensional feature space

– Algorithm partitions 70,000 points into 10 clusters

– Visualization illustrates 2D projection of the original feature-space points

Clustering MNIST images

http://scikit-
learn.org/stable/auto_examples/cluster/plot_kmeans_
digits.html#sphx-glr-auto-examples-cluster-plot-
kmeans-digits-py

http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html#sphx-glr-auto-examples-cluster-plot-kmeans-digits-py


Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Benchmark: Black Scholes Formula

Problem: Evaluate fair European call- and put-option price, 
Vcall and Vput, for underlying stock

Model Parameters:

 S0 – present underlying stock price

 X – strike price

  - stock volatility

 r – risk-free rate

 T - maturity

In practice one needs to evaluate many (nopt) options for 
different parameters

Good performance benchmark for stressing VPU and memory




