
SSG DPD , Nikolay Panchenko

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and
the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by
this notice.

Notice revision #20110804

2

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda

• Scan

• Motivating examples

• Inclusive scan

• Syntax

• Semantics

• Examples

• Exclusive scan

• Syntax

• Semantics

• Examples

• User-Defined Scan

• Vectorizer features in 18.0

• Explicit syntax for histogram-like pattern

• Explicit syntax for compress and expand –like patterns

• Explicit syntax for conditional lastprivates

• Explicit vectorization of loops with breaks

3

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Inclusive scan
x = 0;
for (i = 0; i < n; ++i) {
x += A[i];
B[i] = x;

}

B[j] = A[0]+A[1]+…+A[j-1]+A[j];

C++17:
template< class ExecutionPolicy, class ForwardIt1
, class ForwardIt2,

class BinaryOperation, class T >
ForwardIt2
inclusive_scan(ExecutionPolicy&& policy, Forwar
dIt1 first, ForwardIt1 last, ForwardIt2
d_first, BinaryOperation binary_op, T init);

Exclusive scan
x = 0;
for (i = 0; i < n; ++i) {
B[i] = x;
x += A[i];

}

B[0] = 0;

B[j] = A[0]+A[1]+…+A[j-1], j > 0;

C++17:

template< class ExecutionPolicy, class ForwardIt1
, class ForwardIt2,

class T, class BinaryOperation >
ForwardIt2
exclusive_scan(ExecutionPolicy&& policy,
ForwardIt1 first, ForwardIt1 last, ForwardIt2
d_first, T init, BinaryOperation binary_op);

Motivating examples

4

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• In general, it’s impossible
to correctly identify
synchronization point

• In general, it’s impossible
to transform exclusive scan
to inclusive scan

Problems with automatic vectorization and/or
parallelization

5

for (i = 0; i < n; ++i) {

x += C[i];

foo(x, A[i]);

B[i] = x;

}

for (i = 0; i < n; ++i) {

B[i] = x;

foo(x, A[i]);

x += C[i];

}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Inclusive scan definition

Definition of inclusive scan, of a variable X within the loop L : if two
non-empty disjoint statement sequences S1 and S2 of L can be
selected, such that

• S1 contains all definitions of X; lexically last such

statement is W,

• S1 also contains all statements lexically prior to W

that directly or indirectly use X,

• Any definition in S1 X may only be used in S1 except the

definition of X in the statement W,

• Direct or indirect use of X within S1 must not appear in

any condition expression,

• S2 consists of all statements lexically following W.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Examples for the definition

Good cases Bad cases

for (i = 0; i < n; ++i) {

x += A[i];

B[i] = x;

}

for (i = 0; i < n; ++i) {

x += A[i];

if (i & 5) {

x = C[i];

}

B[i] = x;

}

for (i = 0; i < n; ++i) {

x += A[i];

if (x > 9) {

t = C[i];

}

x += t;

B[i] = x;

}

for (i = 0; i < n; ++i) {

x += A[i];

B[i] = x;

x += A[i];

}

backward dependency

for (i = 0; i < n; ++i) {

t = x + A[i];

C[i] = t;

x = t;

B[i] = x;

}

C[i] is live out

t lives only in S1

depends on all updates of X

for (i = 0; i < n; ++i) {

t = x + A[i];

t1 = t;

x = t1;

if (x) {

B[i] = x;

}

}

t lives only in S1

S1

S2

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Proposed syntax for inclusive scan

8

new clause: scan(sc : item-list)
• Loop level clause, which is used with #pragma omp [simd | parallel for | ...]
• sc: scan–combiner is any built-in binary operation (+, -, *, ...) or UDS
• item-list contains one or more scalar variables

new pragma: #pragma omp inclusive_scan(item-list)
• “partition” pragma, which is used within the loop
• specifies a boundary between definitions and uses
• item-list contains one or more variables that are listed in the scan clause
• item-list cannot contain variables that are not listed in the scan clause
• a variable from item-list must not be used in any other construct
• the pragma must not be used in nested loops
• each list item from scan must be specified in only one inclusive_scan (or

exclusive_scan)
• loop may contain multiple instances of inclusive_scan

Aligned with reduction/in_reduction(in OpenMP 5.0 Preview 2 (TR6))

specification.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use of the syntax for simple case

x = 0;

#pragma omp simd scan(+: x)

for (i = 0; i < n; ++i) {

x += A[i];

#pragma omp inclusive_scan(x)

B[i] = x;

}

x = 0;

for (i = 0; i < n; i += 4) {

vx = [0, 0, 0, 0];

vx = vx + A[i + 3:i];

rvx = [vx3 + vx2 + vx1 + vx0 + x,

vx2 + vx1 + vx0 + x,

vx1 + vx0 + x,

vx0 + x];

B[i + 3:i] = rvx;

x = rvx3;

}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

For the scan construct, a private copy 𝑣𝑥 of each list item is created, one for
each SIMD lane as if the private clause had been used. On each iteration of
the loop the private copy is initialized with identity value.
Any use of the list item prior to inclusive_scan construct as if it is private.
A second private copy 𝑟𝑣𝑥 for each list item is created at inclusive_scan
construct . On each iteration of the loop each SIMD lane of 𝑟𝑣𝑥, 𝑟𝑣𝑥𝑖, 𝑖 ∈
{0, … , 𝑣𝑙 − 1}, is initialized as

𝑟𝑣𝑥𝑖 = 𝑠𝑐(… (𝑠𝑐(𝑠𝑐(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑒𝑚, 𝑣𝑥0), 𝑣𝑥1)…𝑣𝑥𝑖), ∀𝑖,
Any use of the list item after inclusive_scan construct as if it is second private.
At the end of each iteration the original list item is updated by combining the
original list item with the all lanes of the private copy using the combiner of
the specified scan-combiner.

Proposed semantics for inclusive scan

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use of the syntax for simple case

x = 0;

#pragma omp simd scan(+: x)

for (i = 0; i < n; ++i) {

x += A[i];

#pragma omp inclusive_scan(x)

B[i] = x;

}

x = 0;

for (i = 0; i < n; i += 4) {

vx = [0, 0, 0, 0];

vx = vx + A[i + 3:i];

rvx = [vx3 + vx2 + vx1 + vx0 + x,

vx2 + vx1 + vx0 + x,

vx1 + vx0 + x,

vx0 + x];

B[i + 3:i] = rvx;

x = rvx3;

}

For the scan construct, a private copy 𝑣𝑥 of each list
item is created, one for each SIMD lane as if the private
clause had been used. On each iteration of the loop the
private copy is initialized with identity value.
Any use of the list item prior to inclusive_scan
construct as if it is private.
A second private copy 𝑟𝑣𝑥 for each list item is created at
inclusive_scan construct . On each iteration of the loop
each SIMD lane of 𝑟𝑣𝑥, 𝑟𝑣𝑥𝑖 , 𝑖 ∈ {0,… , 𝑣𝑙 − 1}, is
initialized as

𝑟𝑣𝑥𝑖 = 𝑠𝑐(… (𝑠𝑐(𝑠𝑐(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑒𝑚 , 𝑣𝑥0), 𝑣𝑥1)…𝑣𝑥𝑖), ∀𝑖,
Any use of the list item after inclusive_scan construct as
if it is second private.
At the end of each iteration the original list item is
updated by 𝑟𝑣𝑥𝑣𝑙−1 which corresponds to the
lexicographically last executed iteration of the loop.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use of the syntax for simple case

x = 0;

#pragma omp simd scan(+: x)

for (i = 0; i < n; ++i) {

x += A[i];

#pragma omp inclusive_scan(x)

B[i] = x;

}

x = 0;

for (i = 0; i < n; i += 4) {

vx = [0, 0, 0, 0];

vx = vx + A[i + 3:i];

rvx = [vx3 + vx2 + vx1 + vx0 + x,

vx2 + vx1 + vx0 + x,

vx1 + vx0 + x,

vx0 + x];

B[i + 3:i] = rvx;

x = rvx3;

}

For the scan construct, a private copy 𝑣𝑥 of each list
item is created, one for each SIMD lane as if the private
clause had been used. On each iteration of the loop the
private copy is initialized with identity value.
Any use of the list item prior to inclusive_scan
construct as if it is private.
A second private copy 𝑟𝑣𝑥 for each list item is created at
inclusive_scan construct . On each iteration of the loop
each SIMD lane of 𝑟𝑣𝑥, 𝑟𝑣𝑥𝑖 , 𝑖 ∈ {0,… , 𝑣𝑙 − 1}, is
initialized as

𝑟𝑣𝑥𝑖 = 𝑠𝑐(… (𝑠𝑐(𝑠𝑐(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑒𝑚 , 𝑣𝑥0), 𝑣𝑥1)…𝑣𝑥𝑖), ∀𝑖,
Any use of the list item after inclusive_scan construct
as if it is second private.
At the end of each iteration the original list item is
updated by 𝑟𝑣𝑥𝑣𝑙−1 which corresponds to the
lexicographically last executed iteration of the loop.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use of the syntax for simple case

x = 0;

#pragma omp simd scan(+: x)

for (i = 0; i < n; ++i) {

x += A[i];

#pragma omp inclusive_scan(x)

B[i] = x;

}

x = 0;

for (i = 0; i < n; i += 4) {

vx = [0, 0, 0, 0];

vx = vx + A[i + 3:i];

rvx = [vx3 + vx2 + vx1 + vx0 + x,

vx2 + vx1 + vx0 + x,

vx1 + vx0 + x,

vx0 + x];

B[i + 3:i] = rvx;

x = rvx3;

}

For the scan construct, a private copy 𝑣𝑥 of each list
item is created, one for each SIMD lane as if the private
clause had been used. On each iteration of the loop the
private copy is initialized with identity value.
Any use of the list item prior to inclusive_scan
construct as if it is private.
A second private copy 𝑟𝑣𝑥 for each list item is created at
inclusive_scan construct . On each iteration of the loop
each SIMD lane of 𝑟𝑣𝑥, 𝑟𝑣𝑥𝑖 , 𝑖 ∈ {0,… , 𝑣𝑙 − 1}, is
initialized as

𝑟𝑣𝑥𝑖 = 𝑠𝑐(… (𝑠𝑐(𝑠𝑐(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑒𝑚 , 𝑣𝑥0), 𝑣𝑥1)…𝑣𝑥𝑖), ∀𝑖,
Any use of the list item after inclusive_scan construct
as if it is second private.
At the end of each iteration the original list item is
updated by 𝑟𝑣𝑥𝑣𝑙−1 which corresponds to the
lexicographically last executed iteration of the loop.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use of the syntax for simple case

x = 0;

#pragma omp simd scan(+: x)

for (i = 0; i < n; ++i) {

x += A[i];

#pragma omp inclusive_scan(x)

B[i] = x;

}

x = 0;

for (i = 0; i < n; i += 4) {

vx = [0, 0, 0, 0];

vx = vx + A[i + 3:i];

rvx = [vx3 + vx2 + vx1 + vx0 + x,

vx2 + vx1 + vx0 + x,

vx1 + vx0 + x,

vx0 + x];

B[i + 3:i] = rvx;

x = rvx3;

}

For the scan construct, a private copy 𝑣𝑥 of each list
item is created, one for each SIMD lane as if the private
clause had been used. On each iteration of the loop the
private copy is initialized with identity value.
Any use of the list item prior to inclusive_scan
construct as if it is private.
A second private copy 𝑟𝑣𝑥 for each list item is created at
inclusive_scan construct . On each iteration of the loop
each SIMD lane of 𝑟𝑣𝑥, 𝑟𝑣𝑥𝑖 , 𝑖 ∈ {0,… , 𝑣𝑙 − 1}, is
initialized as

𝑟𝑣𝑥𝑖 = 𝑠𝑐(… (𝑠𝑐(𝑠𝑐(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑒𝑚 , 𝑣𝑥0), 𝑣𝑥1)…𝑣𝑥𝑖), ∀𝑖,
Any use of the list item after inclusive_scan construct
as if it is second private.
At the end of each iteration the original list item is
updated by 𝑟𝑣𝑥𝑣𝑙−1 which corresponds to the
lexicographically last executed iteration of the loop.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use of the syntax for simple case

x = 0;

#pragma omp simd scan(+: x)

for (i = 0; i < n; ++i) {

x += A[i];

#pragma omp inclusive_scan(x)

B[i] = x;

}

x = 0;

for (i = 0; i < n; i += 4) {

vx = [0, 0, 0, 0];

vx = vx + A[i + 3:i];

rvx = [vx3 + vx2 + vx1 + vx0 + x,

vx2 + vx1 + vx0 + x,

vx1 + vx0 + x,

vx0 + x];

B[i + 3:i] = rvx;

x = rvx3;

}

For the scan construct, a private copy 𝑣𝑥 of each list
item is created, one for each SIMD lane as if the private
clause had been used. On each iteration of the loop the
private copy is initialized with identity value.
Any use of the list item prior to inclusive_scan
construct as if it is private.
A second private copy 𝑟𝑣𝑥 for each list item is created at
inclusive_scan construct . On each iteration of the loop
each SIMD lane of 𝑟𝑣𝑥, 𝑟𝑣𝑥𝑖 , 𝑖 ∈ {0,… , 𝑣𝑙 − 1}, is
initialized as

𝑟𝑣𝑥𝑖 = 𝑠𝑐(… (𝑠𝑐(𝑠𝑐(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑒𝑚 , 𝑣𝑥0), 𝑣𝑥1)…𝑣𝑥𝑖), ∀𝑖,
Any use of the list item after inclusive_scan construct
as if it is second private.
At the end of each iteration the original list item is
updated by 𝑟𝑣𝑥𝑣𝑙−1 which corresponds to the
lexicographically last executed iteration of the loop.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Programmer can cheat

x = 1;

#pragma omp simd scan(*: x)

for (i = 0; i < n; ++i) {

x += i;

x += A[i];

#pragma omp inclusive_scan(x)

B[i] = x;

}

• This is legal

• Execution will be different to scalar
execution

• Aligned with reduction/in_reduction (in
TR6) specification

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use of the syntax with conditional updates

x = 0;

#pragma omp simd scan(+: x)

for (i = 0; i < n; ++i) {

if (i & 5) {

x += A[i];

}

else {

x += 2 * A[i];

}

#pragma omp inclusive_scan(x)

B[i] = x;

}

x = 0;

for (i = 0; i < n; i += 4) {

vx = [0, 0, 0, 0];

m = ([i + 3, i + 2, i + 1, i] & [5, 5, 5, 5])

!= 0;

vx = vx + @m A[i + 3:i]@m;

vx = vx + @m 2 * A[i + 3:i]@m;

rvx = [vx3 + vx2 + vx1 + vx0 + x,

vx2 + vx1 + vx0 + x,

vx1 + vx0 + x,

vx0 + x];

B[i + 3:i] = rvx;

x = rvx3;

}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

inclusive_scan under condition

x = 0;

#pragma omp simd scan(+: x)

for (i = 0; i < n; ++i) {

if (i & 5) {

x += A[i];

#pragma omp inclusive_scan(x)

B[i] = x;

}

}

x = 0;

for (i = 0; i < n; i += 4) {

vx = [0, 0, 0, 0];

m = ([i + 3, i + 2, i + 1, i] & [5, 5, 5, 5])

!= 0;

vx = vx + @m A[i + 3:i]@m;

// for all lanes of the rvx

rvx = [vx3 + vx2 + vx1 + vx0 + x,

vx2 + vx1 + vx0 + x,

vx1 + vx0 + x,

vx0 + x];

B[i + 3:i] = @m rvx;

x = rvx3;

}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use of the syntax for two scans

x = 0;

y = 0;

#pragma omp simd scan(+: x, y)

for (i = 0; i < n; ++i) {

x += A[i];

#pragma omp inclusive_scan(x)

B[i] = x;

y += B[i];

#pragma omp inclusive_scan(y)

C[i] = y;

}

x = 0;

y = 0;

for (i = 0; i < n; i += 4) {

vx = [0, 0, 0, 0];

vy = [0, 0, 0, 0];

vx = vx + A[i + 3:i];

rvx = [vx3 + vx2 + vx1 + vx0 + x,

vx2 + vx1 + vx0 + x,

vx1 + vx0 + x,

vx0 + x];

B[i + 3:i] = rvx;

x = rxv3;

vy = vy + B[i + 3:i];

rvy = [vy3 + vy2 + vy1 + vy0 + y,

vy2 + vy1 + vy0 + y,

vy1 + vy0 + y,

vy0 + y];

C[i + 3:i] = rvy;

y = rvy3;

}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Non-conformant scan with outer loop

x = 0;

#pragma omp simd scan(+: x)

for (i = 0; i < n; ++i) {

x += A[i];

for (j = 0; j < m; ++j) {

x += C[j];

#pragma omp inclusive_scan(x)

B[j] = x;

}

}

In reality this loop is :

#pragma omp simd scan(+: x)

for (i = 0; i < n; ++i) {

x += A[i];

// j loop

x += C[0];

#pragma omp inclusive_scan(x)

B[0] = x;

x += C[1];

#pragma omp inclusive_scan(x)

B[1] = x;

...

x += C[m - 1];

#pragma omp inclusive_scan(x)

B[m-1] = x;

}

which fall into non - conformant case.
So #pragma omp inclusive_scan must be
used in the same loop level as corresponding
scan clause.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Conformant scan with outer loop

x = 0;

#pragma omp simd scan(+: x)

for (i = 0; i < n; ++i) {

x += A[i];

for (j = 0; j < m; ++j) {

x += C[j];

}

#pragma omp inclusive_scan(x)

B[j] = x;

}

x = 0;

for (i = 0; i < n; i += 4) {

vx = [0, 0, 0, 0];

vx = vx + A[i];

for (j = 0; j < m; ++j) {

vx += broadcast(C[j]);

}

rvx = [vx3 + vx2 + vx1 + vx0 + x,

vx2 + vx1 + vx0 + x,

vx1 + vx0 + x,

vx0 + x];

B[i + 3:i] = rvx;

x = rvx3;

}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Exclusive scan

22

Intel Confidential

Simple exclusive scan
x = 0;

for (i = 0; i < n; ++i) {

B[i] = x;

x += A[i];

}

B[0] = 0;

B[j] = A[0]+A[1]+…+A[j-1], j > 0;

Required transformation (exclusive ->
inclusive scan)
x = 0;

for (i = 0; i < n; ++i) {

x += A[i]; // With special

processing

B[i] = x;

x += A[i];

}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Exclusive scan definition

Definition of exclusive scan, of a variable X within the loop L : if two
disjoint non-empty statement sequences S1 and S2 of L can be
selected, such that

• Lexically last statement of S1 precedes to lexically

first statement of S2

• S2 must contain at least one write to X

• S1 must not have any writes to X

• Any statement in L must belong to S1 or S2

• S1 and S2 are independent, except dependencies to/from X

• Direct or indirect use of X within S2 must not appear in

any condition expression

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Good cases Bad cases

24

for (i = 0; i < n; ++i) {

B[i] = x;

x += A[i];

}

for (i = 0; i < n; ++i) {

if (i & 5) {

C[i] = i;

}

B[i] = x;

D[i] = C[i];

x += A[i];

}

for (i = 0; i < n; ++i) {

B[i] = x;

x += A[i];

if (x) {

t = C[i];

}

x += t;

}

for (i = 0; i < n; ++i) {

x += A[i];

B[i] = x;

x += A[i];

}

depends on all updates of X

for (i = 0; i < n; ++i) {

if (x) {

B[i] = x;

}

t = x + A[i];

t1 = t;

x = t1;

}

t lives only in S1

for (i = 0; i < n; ++i) {

if (i & 5) {

C[i] = i;

}

B[i] = x;

x += A[i] + C[i];

}

Forward dependency for C[]

S1

S2

Examples for the definition

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Proposed syntax for exclusive scan

scan(sc : item-list)
• Loop level clause, which is used with #pragma omp [simd]
• sc: scan–combiner is any built-in binary operation (+, -, *, ...) or UDS
• item-list contains one or more scalar variables

new directive: #pragma omp exclusive_scan(item-list)
• “partition” pragma, which is used within the loop and allows to move

block of statement before the pragma at the end of the loop or move
block of statements after the pragma at the beginning of the loop

• item-list contains one or more variables that are listed in the scan
clause

• item-list cannot contain variables that are not listed in the scan clause
• a variable from item-list must not be used in any other construct
• pragma must not be used under conditions or nested loops
• loop must have at most one instance of exclusive_scan

exclusive_scan pragma specifies end point of the block of statements that can be moved at the end of the loop.

inclusive_scan pragma specifies place where running-reduction vector can be safely computed

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use of the syntax for simple case

x = 0;

#pragma omp simd scan(+: x)

for (i = 0; i < n; ++i) {

B[i] = x;

#pragma omp exclusive_scan(x)

x += A[i];

}

x = 0;

#pragma omp simd scan(+: x)

for (i = 0; i < n; ++i) {

x += A[i];

#pragma omp

__inclusive_scan_shifted_by_one(x)

B[i] = x;

}

Transformed by compiler

__inclusive_scan_shifted_by_one(x) =

[x2 + x1 + x0 + x_init,

x1 + x0 + x_init,

x0 + x_init,

x_init];

inclusive_scan(x) =

[x3 + x2 + x1 + x0 + x_init,

x2 + x1 + x0 + x_init,

x1 + x0 + x_init,

x0 + x_init];

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Proposed semantics for exclusive scan

For the scan construct, a private copy 𝑣𝑥 of each list item is created, one for
each SIMD lane as if the private clause has been used. On each iteration of
the loop the private copy is initialized with identity value.
Loop execution is changed as if each list item is transformed to inclusive
scan.
A second private copy 𝑟𝑣𝑥 for each list item is created at exclusive_scan
construct. On each iteration of the loop each SIMD lane of 𝑟𝑣𝑥, 𝑟𝑣𝑥𝑖, 𝑖 ∈
{0, … , 𝑣𝑙 − 1}, is initialized as

𝑟𝑣𝑥0 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑒𝑚,
𝑟𝑣𝑥𝑖 = 𝑠𝑐(… (𝑠𝑐(𝑠𝑐(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑒𝑚, 𝑣𝑥0), 𝑣𝑥1)…𝑣𝑥𝑖−1), ∀𝑖 ∈ {1, … , 𝑣𝑙 − 1},

Any use of the list item prior to exclusive_scan construct as if it is second
private.
At the end of each iteration the original list item is updated by combining the
original list item with the all lanes of the private copy using the combiner of
the specified scan-combiner.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Find the right place for exclusive_scan

28

x = 0;

#pragma omp simd scan(+:x)

for (i = 0; i < n; ++i) {

if (A[i] > 0) {

C[i] = x;

}

#pragma omp exclusive_scan(x)

D[i] = C[i];

#pragma omp exclusive_scan(x)

if (A[i] < 0) {

x += A[i];

}

}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Inclusive and Exclusive scans in the same loop

29

x = 0;
y = 0;
#pragma omp simd scan(+:x, y)
for (i = 0; i < n; ++i) {
B[i] = x;

#pragma omp exclusive_scan(x)
x += A[i];
y += A[i];

#pragma omp inclusive_scan(y)
C[i] = y;

}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

User-Defined Scan (UDS)

new pragma: #pragma omp declare scan(scan-identifier : typename-list : combiner) [initializer-
clause] new-line
• Same as declare reduction except for scan keyword,

• scan-identifier is either a base language identifier or one of the following operations: +, -, *, &, |, ^,
&& and ||

• typename-list is a list of type names
• combiner is an expression
• initializer-clause is initializer(initializer-expr) where initializer-expr is omp_priv = initializer or

function-name(argument-list).

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Explicit syntax for histogram-like pattern

31

for (i = 0; i < n; ++i) {

++a[b[i]];

}

#pragma omp simd
for (i = 0; i < n; ++i) {

#pragma omp ordered simd overlap(b[i])
{

++a[b[i]];
}

}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Explicit syntax for compress-like pattern

32

for (i = 0; i < n; ++i) {
if (condition) {
a[++j] = b[i];

}
}

#pragma omp simd
for (i = 0; i < n; ++i) {

#pragma omp ordered simd monotonic(j:1)
{

if (condition) {
a[++j] = b[i];

}
}

}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Explicit syntax for expand-like pattern

33

for (i = 0; i < n; ++i) {
if (condition) {
b[i] = a[j++];

}
}

#pragma omp simd
for (i = 0; i < n; ++i) {

#pragma omp ordered simd monotonic(j:1)
{

if (condition) {
b[i] = a[j++];

}
}

}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Explicit syntax for conditional lastprivate

34

for (i = 0; i < n; ++i) {
if (condition) {
j = i;

}
}

#pragma omp simd
lastprivate(conditional: j)
for (i = 0; i < n; ++i) {
if (condition) {
j = i;

}
}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Explicit syntax for loops with exits

35

for (i = 0; i < n; ++i) {
if (condition) {
j = i;
break;

}
}

#pragma omp simd early_exit
lastprivate(conditional: j)
for (i = 0; i < n; ++i) {
if (condition) {
j = i;
break;

}
}

