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® Particle-in-cell (PIC) method is a widely used first-
principles model for laser plasmas simulations, with
many well-known implementations for different
scenarios, such as OSIRIS, EPOCH, VSim, VLPL

® Virtual laser plasma laboratory (VLPL) PIC code is
originally developed by A. Pukhov in Germany, VLPL-S is

a modified In-house code SJTU Laboratory For Laser
Plasmas.

® VLPL-S focus on the interaction between high intensity
ultrashort laser and plasma, used for both theoretical
and experimental purpose

« laser-driven electron acceleration
« acceleration of ion beams
« generation of X-ray and gamma ray radiation
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The key algorithm of VLPL-S is as general PIC method

Iteration over time steps
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Features

Load balanced case used for benchmark.

Number of Particles
Cells per Cell

1200x1200 16
2500x240 9
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36 Tiles, 2 cores per tile

& 20200

36 Tiles

connected by S bt Vectar p —_—
ZD Mesh X | ector rFrocessing units per core

4 Threads per core

6 channels of DDR4 2400 up to 384GB @ ~81 GB/s
Streams Triad

Interconnect
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8GB/16GB of on-spackage MCDRAM memory @
~419 GB/s Streams Triad

2.7 TF DGEMM.

« OPA (Intel® Omni-Path Architecture) is integrated.




Related work
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« Many implementations proved the parallelism of the origin PIC algorithm.
« Bastrakov et al. reported their implementation of PIC code achieved up to 7x speedup on
an 8-core Xeon E5-2690 processor.

« Surmin et al. achieves 1.6x speedup of their PICADOR code on KNC than a single E5-2600
CPU.

 lonization is included in the VLPL-S code, thus more memory consumption and more
communication cost inevitably happen.
« Nakashima showed the toughness of manycore and SIMD-aware implementation of PIC.
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Test machine configurations

Xeon Phi 7210 E5-2699v3

Sockets 1 2
Frequency 1.3GHz 2.3GHz
Cores 04 36
Threads 256 72
DDR4 Memory 6x16GB 8x16GB
MCDRAM 16GB N/A
Short Name KNL HSW
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Performance of the initial implementation of VLPL-S code
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Performance analysis of the initial implementation of VLPL-S
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Due to the first-principle nature, PIC simulations generally require
Intensive computation

AQOS data structure causes inefficient memory access

Vectorization is not used
IO takes almost 10% of overall time in production cases

Load imbalance exists in many production cases

« Distribution of particles is not uniform in initial condition

« New particles are generated during iterations
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Optimizations

Compute-oriented Optimizations

« Memory access optimization
« Thread level parallelization
« Vectorization

Parallel IO

Dynamic load balancing optimization




Memory access optimization
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Cache miss rate reduced

« The hotspot is traversing over linked
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Thread level optimization

« Applying OpenMP results in data hazard.

« Atomic operation ensures the result, but

hurts the performance.

« We propose a passive contribution

(buffering then reduction) method to

avoid the data hazard.

(a) Step 1. Write to the buffers (b) Step 2. Pull the data from
within cell itself. surrounding cells and then reduc-
tion.



Interim method of vectorization
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« Vectorization requires the AOS (array of structure) data structure.

« Packing 8 particles from AOS to SOA (structure of array)

temporarily.
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Parallel IO
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« Rebuild the HDF5 library with
"CC=mpiicpc ./configure --enable-parallel”
« Modifications on Save function

« All MPI Processes write to the
same datasheet

« Only one write operation for one
process

[TT]T

Local Disk/Parallel File System
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« The distribution of particles in the whole space is not uniform and

changing during the iterations in most real test cases

 Evaluate the process load according to the computational time of a
whole row/column as a reference

« Tune the computational load by exchanging the cells of whole
rows/columns if the load imbalance threshold value is achieved
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Performance is improved up to 1.53x on KNL by Compute-oriented

Optimizations
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VLPL-S is 1.77X faster on KNL to two Haswell CPU
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I/0 is boosted up to 10X
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Dynamic load balancing optimization improves 11% performance o
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Conclusion sl
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® The performance of VLPL-S on KNL 7210 is up to 1.77X faster than it on a two-socket
E5-2699v3 node

® Optimizations of VLPL-S mentioned above work both on Xeon and Xeon Phi
® MCDRAM greatly improves the performance for memory-bond applications

® Thread level parallelism helps reducing the communication overhead and improves the
load balancing among threads, thus improves the performance, especially on KNL
Clusters




Future work sl
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® Completely rewrite the linked list to SOA and evaluate the
performance of vectorization

® Improve workload optimization to further avoid load imbalance



