
Vectorization Quality:
How Well is

Your C Code Compiled?

Hiroshi Nakashima
(Kyoto University)



Apology
 I tried to make this talk looking like a keynote by 

showing a big picture of SIMD-aware compilation for 
Xeon Phi and its successors.

 However unfortunately, I took a wrong way to 
prepare this talk, examination of Xeon Phi codes 
generated by representative compilers, and found so 
many funny things that I cannot resist reporting them 
in this talk.

 Therefore, I’m so sorry that this talk has many nerd
(or “otaku” in Japanese) issues about compilers 
targeting AVX-512, which however I still hope are 
meaningful not only for compiler people but also for 
HPC people working on Xeon Phi in general.
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Introduction
 Xeon Phi’s key technologies are;

 high per-core DPFP performance of 32FLOP/cycle 
achieved by dual-issue 512-bit FMA;

 68 (or 64) x86 cores for up to 272 (or 256) threads;
 high bandwidth (≈500GB/s) MCDRAM;
 and ...

 Per-core performance heavily depends on;
 vectorizability of your innermost loops; and
 ability of your compiler;

 to recognize your loops as vectorizable; and
 to generate good code exploiting AVX-512’s advanced 

features (mask, gather/scatter, conflict detection, ...).

 Let’s see the ability of a few compilers.
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chassisBlade

Supercomputer with Xeon Phi in Kyoto

opt: 5x2x37.5Gbps BP: 15x1x42Gbps

copper:
5x3x42Gbps

Xeon Phi 7250 (KNL)
1.4GHz x 32 x 68
= 3.06TFlops

MCDRAM
16GB; 921GB/s

DDR4-2133
96GB; 102.4GB/s

copper: 16x15.75GB/s
opt: 60x18.75GB/s

 68C x 1,800 = 122,400C
 5.48PFlops
 28+169=197TB
 15.5TB/s

cabinet x 2
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How to See the Ability
 Two programs

 A kind of simple benchmark of c[i]=a[i]+b[i]
and its variants with index arrays.

 A particle-in-cell (PIC) simulation code having 
three fairly complicated vectorizable loops.

 Programs are written;
 in C99 so that arrays/pointers in loops are 
restrict-ed and multi-dimensional arrays are 
variable-size in lower dimensions.

 without any intrinsic functions, compiler-specific 
directives, or omp simd pragmas.

 and compiled by;
 icc 17.0.3/18.0.0, craycc 8.6.3 and gcc 7.2.0.
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Why without Directives?
 We accept OpenMP’s directive-assisted 

parallelization because;
 parallelization has too many alternatives to 

choose the best automatically;
 even for a particular method, examining its 

applicability is extremely tough; and
 attaching directives is considered as part of 

parallel programming rather than tuning.
 SIMD-vectorization has a different story;

 auto-vectorization is much easier than auto-
parallelization; and

 attaching directives to many vectorizable loops is 
simply boring and harmful for code maintenance.
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Vector Addition: Overview
 Is  for(i=0;i<n;i++)body; vectorized?

double *restrict a, *restrict b, *restrict c;
int *restrict xa, *restrict xb, *restrict xc;

7
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body icc17 icc18 craycc gcc
c[i]=a[i]+b[i] Yes Yes Yes Yes
c[i]=a[xa[i]]+b[xb[i]] Yes Yes Yes Yes
c[xc[i]]=
a[xa[i]]+b[xb[i]]

Yes No Yes No

a[i]+=b[i] Yes Yes Yes Yes
a[i]+=b[xb[i]] Yes Yes Yes Yes
a[xa[i]]+=b[xb[i]] Yes No No No

why degrade halving
performance?



Vector Addition:
Loop Structure (1/2) 

 Common conceptual structure
for(i=0;(long)(c+i)&0x3f;i++) c[i]=a[i]+b[i];

//peeling
for(;i<(n/16)*16;i++) c[i]=a[i]+b[i]; //main
for(;i<n;i++) c[i]=a[i]+b[i];         //remainder

 Compiler-specific features & #instructions
 Average of all possibilities when icc’s main loop for 
c[i]=a[i]+b[i] iterates N-times.

 K=3 is #-of kernel instructions in the main body.

8
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peeling main remainder
icc vectorized

0.9K+43.1=45.8
2way unroll
(2K+3)N=9N

vectorized
1.4K+30.3=34.4

craycc no
14

2way unroll
(2K+10)N=16N

(8+4+2+1)-way
2.9K+18.4=27.0

gcc expanded scalar
(seq of body + if)
3.5K+47.3=57.8

not unrolled

(2K+8)N=14N

expanded scalar
(seq of body + if)
4K+25.6=37.6



Vector Addition:
Loop Structure (2/2) 

 Vectorizing peeling & remainder loops
 Exploits Opmask (k0-7) being a new feature of 

AVX-512 to vectorize very short loops, up to 7 
(peeling) or 15 (remainder).

 Fundamentally good idea and effective especially 
when K is large while N is not so large.

 However, the constant overhead of 30 or so 
instructions mainly for masking is not negligible 
especially when N is very small, e.g. 1 or 2, or 
even 0, in SpMV with a CRS matrix.

 The overhead can be reduced by, e.g.;
 eliminating redundant loop-control instructions for a 

loop iterating only once.
 introducing new instructions to produce Opmask value 

from the loop count (like ARM-SVE’s whilelt). 9
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Vector Addition:
Main Body (1/5)

 icc17=icc18
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c[i]=a[i]+b[i] a[i]+=b[i]

vmovups a[i]
vmovups a[i+8]
vaddpd b[i]
vmovupd c[i]=
vaddpd b[i+8]
vmovupd c[i+8]=
addq i+=16
cmpq i<n
jb if(i<n)goto

vmovups a[i]
vmovups a[i+8]
vaddpd b[i]
vmovupd a[i]=
vaddpd b[i+8]
vmovupd a[i+8]=
addq i+=8
cmpq i<n
jb if(i<n)goto

craycc gcc
 Has prefetcht0 for 
{abc}[i+{80,88}].

 Not unrolled.

 Has subq/leaq to increment vmovupd's index (=i*8) because it 
is not scaled.



Vector Addition:
Main Body (2/5)

 icc17=icc18

 Masking with 11....11 is necessary, but zero-clear (=craycc) 
of vgatherdpd’s destination should be redundant.

 craycc & gcc perform 2-way unrolling.
11
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c[i]=a[xa[i]]+b[xb[i]] a[i]+=b[xb[i]]

vmovdqu xa[i]
kxnorw k1=11...11
vmovdqu xb[i]
vpxord aa=0
vpxord bb=0
kxnorw k2=11...11
vgatherdpd aa=a[]{k1}
vgatherdpd bb=b[]{k2}
vaddpd aa+bb
vmovupd c[i]=aa++bb
addq i+=8
cmpq i<n
jb if(i<n)goto

vmovdqu xb[i]
vpxord bb=0
kxnorw k1=11...11
vmovups aa=a[i]
vgatherdpd bb=b[]{k1}
vaddpd aa+bb
vmovupd a[i]=aa+bb
addq i+=8
cmpq i<n
jb if(i<n)goto



Vector Addition:
Main Body (3/5)

 Why ki=11...11 and masking necessary?
 vgatherdpd clears ki for completed elements so 

that it can be re-executed when an element causes 
memory access fault without accessing 
completed elements repeatedly.

 Really necessary?
 vmovupd may cross a page boundary and seems 

to be re-executed as a whole when one of two 
pages causes memory access fault.

 ARM-SVE’s gather (and scatter) does not have 
such a feature.

 But unfortunately, we cannot make vgatherdpd
unmasked because it raises #UD exception (sigh).
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Vector Addition:
Main Body (4/5)

 icc17

 craycc performs 2-way unrolling.
13
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c[xc[i]]=a[xa[i]]+b[xb[i]]

vmovdqu xa[i]
kxnorw k1=11...11
vmovdqu xb[i]
vpxord aa=0
vpxord bb=0
kxnorw k2=11...11
vmovdqu xc[i]
addq i+=8
kxnorw k3=11...11
vgatherdpd aa=a[]{k1}
vgatherdpd bb=b[]{k2}
vaddpd aa+bb
vscatterdpd c[]=aa+bb{k3}
cmpq i<n
jb if(i<n)goto

works well even when
xc[i..i+7] has duplications.



Vector Addition:
Main Body (5/5)

 icc17 for a[xa[i]]+=b[xb[i]]

 Complicated code for the case xa[i..i+7] has 
duplications, but reasonably efficient if not, and seems 
better than serial-if-duplicated in most duplicated cases. 14
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L0:vmovdqu     xb[i]
vpxord bb=0
kmovw k2=11...11
vpxord aa=0
vmovdqu xb[i]
kmovw k3=11...11
vgatherdpd bb=b[]{k2}
vmovdqu xa[i]
vpconflictd c=conf(xa[i])
vgatherdpd aa=a[]{k3}
vpmovzxdq discard_upper(c)
vptestmq k0<j>=(c[j]!=0)
vaddpd ab=aa+bb
kmovw g=k0
testl g==0
je          if(!g)goto L2
vpbroadcastmb2q for c[j]!=0

vpbroadcastq n[j]=0x3f       
vplzcntq m[j]=lz(c[j])
vptestmq k0<j>=(c[j]!=0)
vpsubq n[j]-=m[j]
kmovw g=k0

L1:kmovw        k2=g
vpbroadcastmb2q d[j]=k2
vpermpd ab[j]=ab[n[j]]
vaddpd ab+=aa{k2}
vptestmq k0<j>=(c[j]&d[j])
kmovw g=k0
testl g==0
jne if(g)goto L1

L2:addq         i+=8
kmovw k2=11...11
vscatterdpd a[]=ab{k2}
cmpq i<n
jb if(i<n)goto L0



Vector Addition:
restrict Qualification (1/2)

 restrict qualification of RHS arrays ensure that 
they are not modified by the assignment of LHS 
arrays (whose mutual conflicts are also ensured from 
happening by restrict-ing them).

 Therefore without restrict-ion we cannot expect, in 
general, that a loop is vectorized even when arrays 
are actually conflict-free.

 However, icc and craycc dare to vectorize non-
restrict-ed c[i]=a[i]+b[i] (and a[i]+=b[i]) 
with an inspector to check c−8<a,b<c and a serial 
loop for the case this condition holds.
 Personally I don’t love this officious vectorization because it 

could make programmers overestimating vectorization 
capability.

 Loops with indirection are not vectorized because 
inspection is virtually impossible. 15
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Vector Addition:
restrict Qualification (2/2)

 Modification-free nature of RHS arrays may be 
guaranteed by another more intuitive qualification, 
const for array elements (not for the pointer), but is 
this sufficient for your compiler?

 Assuring correctness of const is easier than restrict for both of 
programmers and compilers.

 In theory, restrict qualification of LHS arrays is not necessary 
because no other arrays appear in LHS.

 However even icc needs restrict for LHS arrays, or generates 
codes for the case without restrict at all. 16
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body icc17 icc18 craycc gcc
c[i]=a[i]+b[i] Yes/Yes Yes/Yes Yes/Yes Yes/Yes
c[i]=a[xa[i]]+b[xb[i]] Yes/Yes Yes/Yes Yes/No Yes/No
c[xc[i]]=a[xa[i]]+b[xb[i]] Yes/Yes No/No Yes/No No/No
a[i]+=b[i] Yes/Yes Yes/Yes Yes/Yes Yes/Yes
a[i]+=b[xb[i]] Yes/Yes Yes/Yes Yes/No Yes/No
a[xa[i]]+=b[xb[i]] Yes/Yes No/No No/No No/No



PIC Code: Overview (1/2)
 For each p at xp in a cell whose vertices are 

at δxp ;
 Update vp by Lorentz force determined by E and B

at δxp, and then update xp by vp.
 Add the contribution of p’s motion to J at δxp.
 In a naive implementation, E[][][], B[][][], 

J[][][] are accessed by xp +{0,1}3 with 
gather/scatter.
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PIC Code: Overview (2/2)
 Let each cell c have the set (bin) of all 

particles in it.
 Scalarize E/B/J accessed by all p in c.

for(c in cells){
{sE}=Earound(c); {sB}=Baround(c);
for(p in c) v[p]+=lorentz(p,{sE},{sB});
{sJ}=0;
for(p in c)
{{sJ}+=scatter(p); x[p]+=v[p];}
Jaround(c)+={sJ};
for(p in c) migrate(p);

}
for(c in cells){
{sJ}=0;  for(p in c) {sJ}+=scatter(p);
Jaround(c)+={sJ};

}
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Since x[] and v[]
are simple SOA-
type arrays,
vectorized well
without gather/
scatter of E/B/J.
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PIC Code:
How Complicated

 Push-loop for Lorentz acceleration has;
 51 (!!) loop-invariant scalar variables for E (24), B

(24) and the base coordinate of c (3).
 149 DP-FLOPs, including a division, for 

interpolation of E/B, cross product in Lorentz 
force calculation, etc.

 Two scatter-loops commonly have;
 12 scalar variables to which J’s components are 

accumulated, and 6 loop-invariants for the base 
coordinate of c.

 73 or 66 DP-FLOPs, including three conditional 
expressions, for extrapolation of the contribution 
of particle motion to J’s components, etc.

19
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PIC Code:
Vectorized?

 Codes generated by icc17 and icc18 are virtually 
equivalent.

 In icc’s code, remainder part of all three loops are 
vectorized, as well as peeling part of push and 
scatter-2 (while scatter-1 does not have peeling 
part).

 In craycc’s code, no loops have peeling part, and 
their remainder parts are serial.

20
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body icc17 icc18 craycc gcc
push Yes Yes Yes No
scatter-1 Yes Yes Yes No
scatter-2 Yes Yes Yes No



PIC Code:
Vector Register Allocation

 For push-loop, icc manages to allocate 16 loop-
invariants out of 51 and 2 constants to vector 
registers, while only 14 registers are used for 
local/temporary variables.

 Even with this good allocation, 35 loop-invariants 
(and a constant) are kept in memory in fully 
expanded form (i.e., one variable consumes 64B).
 64B×35=2240B is not small and consumes 6.8% of 32KB L1-

Dcache.
 By exploiting m64bcst feature, this consumption can be 

reduced to 280B or 0.85% of L1D.
 Spilled constant is loaded by vbroadcastsd.

 For two scatter-loops, icc does almost perfect game.
 One constant of scatter-1 is spilled, while three array 

elements are loaded twice to reduce register consumption.
21
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PIC Code:
Conditionals

 Two scatter-loops commonly have;
xr=(x0==x1)?(px0+px1)*0.5:((x0<x1)?x1:x0);

 This conditional expression does not inhibit
vectorization in both of icc and craycc;
 Both compilers exploit Opmask.
 icc is a little bit cleverer because it makes vmulpd for 
(px0+px1)*0.5 masked to overwrite the result of 
fmax(x0,x1), rather than choosing them by masked 
vmovapd.

 However, we cannot expect that loops with any 
conditionals are vectorized.
 e.g., for() c[i]=a[i]==0.0?f(a[i],b[i]):a[i]+b[i];

is not vectorized.
 Partial vectorization for the case a[i..i+7]!=0 seems to be 

future work (or needs some directive to force vectorization).
22
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PIC Code:
Reductions

 Summing up 8 partial sums
 icc

 icc’s code has two more instructions but its critical path is 
shorter, by one instruction of moving vector elements.

 Seems efficient even in short vector cases (e.g., dot product 
for CRS-SpMV).

23
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+
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+

vextractf64x4

vaddpd
vaddsd

vaddsd

vaddsd
valignq
valignq
valignq

vextractf64x4

vextractf128

vpermilpd

vaddpd vaddpd vaddsd



PIC Code:
Division

 Push-loop has q=2.0/d
  (1/d’)=vrcp28pd(d);
 (1/d)=2*(1/d’)-d*(1/d’)*(1/d’);

 icc
(1/d)=(1/d’)*(1-d*(1/d’))+(1/d’);
q=2*(1/d);
if ((1/d)==NAN) q=vdivid(2,d);

 craycc
temp=2-d*(1/d’);(2/d’)=(1/d’)+(1/d’);
q=temp*(2/d’);

24
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Optimization(?) for numerator=2.
In general, it will be;
(num/d’)=num*(1/d’)

Is this exception handling necessary?



PIC Code:
Peep Holes

 icc aggressively apply compile-time 
evaluation of arithmetic expressions.
 Good example

source:c=a*b; e=c-d; g=a-c; //a is dead here
object: e=a; e=e*b-d; g=a-a*b; //g uses a’s reg

 Bad examples
source:c=a*b; d=a-c; e=b-c; g+=c*f;

//a and b are alive
object: c=a*b; d=a; d=a-d*b; e=a; e=b-e*b; 

g+=c*f;
source:b=a-x[i]; /*b is used*/ c=(a+b)*0.5;
object: b=a-x[i]; /*b is used and dead*/

c=2*a-x[i]; c*=0.5;

25
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Closing Remarks
 Compilers for Xeon Phi (AVX-512), especially icc, 

generate reasonably efficient codes from C programs 
free from directives or intrinsics.

 However, there is still some room of improvement 
especially in complicated loop bodies and outside 
main bodies.
 Outside code has become important as the effective loop 

trip count has been halved or quartered.
 (Micro-)Architectural support is still very welcome.

 Better exception interface of gather/scatter.
 Efficient way to have Opmask for peeling/remainder loops.
 Loop-count-base branch prediction for relatively short loops 

(e.g. n=10 or so).
 ...
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