
Vectorization Quality:
How Well is

Your C Code Compiled?

Hiroshi Nakashima
(Kyoto University)

Apology
 I tried to make this talk looking like a keynote by

showing a big picture of SIMD-aware compilation for
Xeon Phi and its successors.

 However unfortunately, I took a wrong way to
prepare this talk, examination of Xeon Phi codes
generated by representative compilers, and found so
many funny things that I cannot resist reporting them
in this talk.

 Therefore, I’m so sorry that this talk has many nerd
(or “otaku” in Japanese) issues about compilers
targeting AVX-512, which however I still hope are
meaningful not only for compiler people but also for
HPC people working on Xeon Phi in general.

2

IXPUG Workshop © 2018 H. Nakashima●

●

Introduction
 Xeon Phi’s key technologies are;

 high per-core DPFP performance of 32FLOP/cycle
achieved by dual-issue 512-bit FMA;

 68 (or 64) x86 cores for up to 272 (or 256) threads;
 high bandwidth (≈500GB/s) MCDRAM;
 and ...

 Per-core performance heavily depends on;
 vectorizability of your innermost loops; and
 ability of your compiler;

 to recognize your loops as vectorizable; and
 to generate good code exploiting AVX-512’s advanced

features (mask, gather/scatter, conflict detection, ...).

 Let’s see the ability of a few compilers.
3

IXPUG Workshop © 2018 H. Nakashima●

●

chassisBlade

Supercomputer with Xeon Phi in Kyoto

opt: 5x2x37.5Gbps BP: 15x1x42Gbps

copper:
5x3x42Gbps

Xeon Phi 7250 (KNL)
1.4GHz x 32 x 68
= 3.06TFlops

MCDRAM
16GB; 921GB/s

DDR4-2133
96GB; 102.4GB/s

copper: 16x15.75GB/s
opt: 60x18.75GB/s

 68C x 1,800 = 122,400C
 5.48PFlops
 28+169=197TB
 15.5TB/s

cabinet x 2

4

IXPUG Workshop © 2018 H. Nakashima

How to See the Ability
 Two programs

 A kind of simple benchmark of c[i]=a[i]+b[i]
and its variants with index arrays.

 A particle-in-cell (PIC) simulation code having
three fairly complicated vectorizable loops.

 Programs are written;
 in C99 so that arrays/pointers in loops are
restrict-ed and multi-dimensional arrays are
variable-size in lower dimensions.

 without any intrinsic functions, compiler-specific
directives, or omp simd pragmas.

 and compiled by;
 icc 17.0.3/18.0.0, craycc 8.6.3 and gcc 7.2.0.

5

IXPUG Workshop © 2018 H. Nakashima

Why without Directives?
 We accept OpenMP’s directive-assisted

parallelization because;
 parallelization has too many alternatives to

choose the best automatically;
 even for a particular method, examining its

applicability is extremely tough; and
 attaching directives is considered as part of

parallel programming rather than tuning.
 SIMD-vectorization has a different story;

 auto-vectorization is much easier than auto-
parallelization; and

 attaching directives to many vectorizable loops is
simply boring and harmful for code maintenance.

6

IXPUG Workshop © 2018 H. Nakashima

Vector Addition: Overview
 Is for(i=0;i<n;i++)body; vectorized?

double *restrict a, *restrict b, *restrict c;
int *restrict xa, *restrict xb, *restrict xc;

7

IXPUG Workshop © 2018 H. Nakashima

body icc17 icc18 craycc gcc
c[i]=a[i]+b[i] Yes Yes Yes Yes
c[i]=a[xa[i]]+b[xb[i]] Yes Yes Yes Yes
c[xc[i]]=
a[xa[i]]+b[xb[i]]

Yes No Yes No

a[i]+=b[i] Yes Yes Yes Yes
a[i]+=b[xb[i]] Yes Yes Yes Yes
a[xa[i]]+=b[xb[i]] Yes No No No

why degrade halving
performance?

Vector Addition:
Loop Structure (1/2)

 Common conceptual structure
for(i=0;(long)(c+i)&0x3f;i++) c[i]=a[i]+b[i];

//peeling
for(;i<(n/16)*16;i++) c[i]=a[i]+b[i]; //main
for(;i<n;i++) c[i]=a[i]+b[i]; //remainder

 Compiler-specific features & #instructions
 Average of all possibilities when icc’s main loop for
c[i]=a[i]+b[i] iterates N-times.

 K=3 is #-of kernel instructions in the main body.

8

IXPUG Workshop © 2018 H. Nakashima

peeling main remainder
icc vectorized

0.9K+43.1=45.8
2way unroll
(2K+3)N=9N

vectorized
1.4K+30.3=34.4

craycc no
14

2way unroll
(2K+10)N=16N

(8+4+2+1)-way
2.9K+18.4=27.0

gcc expanded scalar
(seq of body + if)
3.5K+47.3=57.8

not unrolled

(2K+8)N=14N

expanded scalar
(seq of body + if)
4K+25.6=37.6

Vector Addition:
Loop Structure (2/2)

 Vectorizing peeling & remainder loops
 Exploits Opmask (k0-7) being a new feature of

AVX-512 to vectorize very short loops, up to 7
(peeling) or 15 (remainder).

 Fundamentally good idea and effective especially
when K is large while N is not so large.

 However, the constant overhead of 30 or so
instructions mainly for masking is not negligible
especially when N is very small, e.g. 1 or 2, or
even 0, in SpMV with a CRS matrix.

 The overhead can be reduced by, e.g.;
 eliminating redundant loop-control instructions for a

loop iterating only once.
 introducing new instructions to produce Opmask value

from the loop count (like ARM-SVE’s whilelt). 9

IXPUG Workshop © 2018 H. Nakashima

Vector Addition:
Main Body (1/5)

 icc17=icc18

10

IXPUG Workshop © 2018 H. Nakashima

c[i]=a[i]+b[i] a[i]+=b[i]

vmovups a[i]
vmovups a[i+8]
vaddpd b[i]
vmovupd c[i]=
vaddpd b[i+8]
vmovupd c[i+8]=
addq i+=16
cmpq i<n
jb if(i<n)goto

vmovups a[i]
vmovups a[i+8]
vaddpd b[i]
vmovupd a[i]=
vaddpd b[i+8]
vmovupd a[i+8]=
addq i+=8
cmpq i<n
jb if(i<n)goto

craycc gcc
 Has prefetcht0 for
{abc}[i+{80,88}].

 Not unrolled.

 Has subq/leaq to increment vmovupd's index (=i*8) because it
is not scaled.

Vector Addition:
Main Body (2/5)

 icc17=icc18

 Masking with 11....11 is necessary, but zero-clear (=craycc)
of vgatherdpd’s destination should be redundant.

 craycc & gcc perform 2-way unrolling.
11

IXPUG Workshop © 2018 H. Nakashima

c[i]=a[xa[i]]+b[xb[i]] a[i]+=b[xb[i]]

vmovdqu xa[i]
kxnorw k1=11...11
vmovdqu xb[i]
vpxord aa=0
vpxord bb=0
kxnorw k2=11...11
vgatherdpd aa=a[]{k1}
vgatherdpd bb=b[]{k2}
vaddpd aa+bb
vmovupd c[i]=aa++bb
addq i+=8
cmpq i<n
jb if(i<n)goto

vmovdqu xb[i]
vpxord bb=0
kxnorw k1=11...11
vmovups aa=a[i]
vgatherdpd bb=b[]{k1}
vaddpd aa+bb
vmovupd a[i]=aa+bb
addq i+=8
cmpq i<n
jb if(i<n)goto

Vector Addition:
Main Body (3/5)

 Why ki=11...11 and masking necessary?
 vgatherdpd clears ki for completed elements so

that it can be re-executed when an element causes
memory access fault without accessing
completed elements repeatedly.

 Really necessary?
 vmovupd may cross a page boundary and seems

to be re-executed as a whole when one of two
pages causes memory access fault.

 ARM-SVE’s gather (and scatter) does not have
such a feature.

 But unfortunately, we cannot make vgatherdpd
unmasked because it raises #UD exception (sigh).

12

IXPUG Workshop © 2018 H. Nakashima●

●

Vector Addition:
Main Body (4/5)

 icc17

 craycc performs 2-way unrolling.
13

IXPUG Workshop © 2018 H. Nakashima

c[xc[i]]=a[xa[i]]+b[xb[i]]

vmovdqu xa[i]
kxnorw k1=11...11
vmovdqu xb[i]
vpxord aa=0
vpxord bb=0
kxnorw k2=11...11
vmovdqu xc[i]
addq i+=8
kxnorw k3=11...11
vgatherdpd aa=a[]{k1}
vgatherdpd bb=b[]{k2}
vaddpd aa+bb
vscatterdpd c[]=aa+bb{k3}
cmpq i<n
jb if(i<n)goto

works well even when
xc[i..i+7] has duplications.

Vector Addition:
Main Body (5/5)

 icc17 for a[xa[i]]+=b[xb[i]]

 Complicated code for the case xa[i..i+7] has
duplications, but reasonably efficient if not, and seems
better than serial-if-duplicated in most duplicated cases. 14

IXPUG Workshop © 2018 H. Nakashima

L0:vmovdqu xb[i]
vpxord bb=0
kmovw k2=11...11
vpxord aa=0
vmovdqu xb[i]
kmovw k3=11...11
vgatherdpd bb=b[]{k2}
vmovdqu xa[i]
vpconflictd c=conf(xa[i])
vgatherdpd aa=a[]{k3}
vpmovzxdq discard_upper(c)
vptestmq k0<j>=(c[j]!=0)
vaddpd ab=aa+bb
kmovw g=k0
testl g==0
je if(!g)goto L2
vpbroadcastmb2q for c[j]!=0

vpbroadcastq n[j]=0x3f
vplzcntq m[j]=lz(c[j])
vptestmq k0<j>=(c[j]!=0)
vpsubq n[j]-=m[j]
kmovw g=k0

L1:kmovw k2=g
vpbroadcastmb2q d[j]=k2
vpermpd ab[j]=ab[n[j]]
vaddpd ab+=aa{k2}
vptestmq k0<j>=(c[j]&d[j])
kmovw g=k0
testl g==0
jne if(g)goto L1

L2:addq i+=8
kmovw k2=11...11
vscatterdpd a[]=ab{k2}
cmpq i<n
jb if(i<n)goto L0

Vector Addition:
restrict Qualification (1/2)

 restrict qualification of RHS arrays ensure that
they are not modified by the assignment of LHS
arrays (whose mutual conflicts are also ensured from
happening by restrict-ing them).

 Therefore without restrict-ion we cannot expect, in
general, that a loop is vectorized even when arrays
are actually conflict-free.

 However, icc and craycc dare to vectorize non-
restrict-ed c[i]=a[i]+b[i] (and a[i]+=b[i])
with an inspector to check c−8<a,b<c and a serial
loop for the case this condition holds.
 Personally I don’t love this officious vectorization because it

could make programmers overestimating vectorization
capability.

 Loops with indirection are not vectorized because
inspection is virtually impossible. 15

IXPUG Workshop © 2018 H. Nakashima

Vector Addition:
restrict Qualification (2/2)

 Modification-free nature of RHS arrays may be
guaranteed by another more intuitive qualification,
const for array elements (not for the pointer), but is
this sufficient for your compiler?

 Assuring correctness of const is easier than restrict for both of
programmers and compilers.

 In theory, restrict qualification of LHS arrays is not necessary
because no other arrays appear in LHS.

 However even icc needs restrict for LHS arrays, or generates
codes for the case without restrict at all. 16

IXPUG Workshop © 2018 H. Nakashima

body icc17 icc18 craycc gcc
c[i]=a[i]+b[i] Yes/Yes Yes/Yes Yes/Yes Yes/Yes
c[i]=a[xa[i]]+b[xb[i]] Yes/Yes Yes/Yes Yes/No Yes/No
c[xc[i]]=a[xa[i]]+b[xb[i]] Yes/Yes No/No Yes/No No/No
a[i]+=b[i] Yes/Yes Yes/Yes Yes/Yes Yes/Yes
a[i]+=b[xb[i]] Yes/Yes Yes/Yes Yes/No Yes/No
a[xa[i]]+=b[xb[i]] Yes/Yes No/No No/No No/No

PIC Code: Overview (1/2)
 For each p at xp in a cell whose vertices are

at δxp ;
 Update vp by Lorentz force determined by E and B

at δxp, and then update xp by vp.
 Add the contribution of p’s motion to J at δxp.
 In a naive implementation, E[][][], B[][][],

J[][][] are accessed by xp +{0,1}3 with
gather/scatter.

IXPUG Workshop © 2018 H. Nakashima

)(),(pp xBxE δδ))((pp vxJ −δ)(pxJ δ
ΩΩ ~,

17

PIC Code: Overview (2/2)
 Let each cell c have the set (bin) of all

particles in it.
 Scalarize E/B/J accessed by all p in c.

for(c in cells){
{sE}=Earound(c); {sB}=Baround(c);
for(p in c) v[p]+=lorentz(p,{sE},{sB});
{sJ}=0;
for(p in c)
{{sJ}+=scatter(p); x[p]+=v[p];}
Jaround(c)+={sJ};
for(p in c) migrate(p);

}
for(c in cells){
{sJ}=0; for(p in c) {sJ}+=scatter(p);
Jaround(c)+={sJ};

}

IXPUG Workshop © 2018 H. Nakashima

Since x[] and v[]
are simple SOA-
type arrays,
vectorized well
without gather/
scatter of E/B/J.

18

PIC Code:
How Complicated

 Push-loop for Lorentz acceleration has;
 51 (!!) loop-invariant scalar variables for E (24), B

(24) and the base coordinate of c (3).
 149 DP-FLOPs, including a division, for

interpolation of E/B, cross product in Lorentz
force calculation, etc.

 Two scatter-loops commonly have;
 12 scalar variables to which J’s components are

accumulated, and 6 loop-invariants for the base
coordinate of c.

 73 or 66 DP-FLOPs, including three conditional
expressions, for extrapolation of the contribution
of particle motion to J’s components, etc.

19

IXPUG Workshop © 2018 H. Nakashima

PIC Code:
Vectorized?

 Codes generated by icc17 and icc18 are virtually
equivalent.

 In icc’s code, remainder part of all three loops are
vectorized, as well as peeling part of push and
scatter-2 (while scatter-1 does not have peeling
part).

 In craycc’s code, no loops have peeling part, and
their remainder parts are serial.

20

IXPUG Workshop © 2018 H. Nakashima

body icc17 icc18 craycc gcc
push Yes Yes Yes No
scatter-1 Yes Yes Yes No
scatter-2 Yes Yes Yes No

PIC Code:
Vector Register Allocation

 For push-loop, icc manages to allocate 16 loop-
invariants out of 51 and 2 constants to vector
registers, while only 14 registers are used for
local/temporary variables.

 Even with this good allocation, 35 loop-invariants
(and a constant) are kept in memory in fully
expanded form (i.e., one variable consumes 64B).
 64B×35=2240B is not small and consumes 6.8% of 32KB L1-

Dcache.
 By exploiting m64bcst feature, this consumption can be

reduced to 280B or 0.85% of L1D.
 Spilled constant is loaded by vbroadcastsd.

 For two scatter-loops, icc does almost perfect game.
 One constant of scatter-1 is spilled, while three array

elements are loaded twice to reduce register consumption.
21

IXPUG Workshop © 2018 H. Nakashima

PIC Code:
Conditionals

 Two scatter-loops commonly have;
xr=(x0==x1)?(px0+px1)*0.5:((x0<x1)?x1:x0);

 This conditional expression does not inhibit
vectorization in both of icc and craycc;
 Both compilers exploit Opmask.
 icc is a little bit cleverer because it makes vmulpd for
(px0+px1)*0.5 masked to overwrite the result of
fmax(x0,x1), rather than choosing them by masked
vmovapd.

 However, we cannot expect that loops with any
conditionals are vectorized.
 e.g., for() c[i]=a[i]==0.0?f(a[i],b[i]):a[i]+b[i];

is not vectorized.
 Partial vectorization for the case a[i..i+7]!=0 seems to be

future work (or needs some directive to force vectorization).
22

IXPUG Workshop © 2018 H. Nakashima

PIC Code:
Reductions

 Summing up 8 partial sums
 icc

 icc’s code has two more instructions but its critical path is
shorter, by one instruction of moving vector elements.

 Seems efficient even in short vector cases (e.g., dot product
for CRS-SpMV).

23

IXPUG Workshop © 2018 H. Nakashima

+ +

+

+ + +
+

vextractf64x4

vaddpd
vaddsd

vaddsd

vaddsd
valignq
valignq
valignq

vextractf64x4

vextractf128

vpermilpd

vaddpd vaddpd vaddsd

PIC Code:
Division

 Push-loop has q=2.0/d
 (1/d’)=vrcp28pd(d);
 (1/d)=2*(1/d’)-d*(1/d’)*(1/d’);

 icc
(1/d)=(1/d’)*(1-d*(1/d’))+(1/d’);
q=2*(1/d);
if ((1/d)==NAN) q=vdivid(2,d);

 craycc
temp=2-d*(1/d’);(2/d’)=(1/d’)+(1/d’);
q=temp*(2/d’);

24

IXPUG Workshop © 2018 H. Nakashima

Optimization(?) for numerator=2.
In general, it will be;
(num/d’)=num*(1/d’)

Is this exception handling necessary?

PIC Code:
Peep Holes

 icc aggressively apply compile-time
evaluation of arithmetic expressions.
 Good example

source:c=a*b; e=c-d; g=a-c; //a is dead here
object: e=a; e=e*b-d; g=a-a*b; //g uses a’s reg

 Bad examples
source:c=a*b; d=a-c; e=b-c; g+=c*f;

//a and b are alive
object: c=a*b; d=a; d=a-d*b; e=a; e=b-e*b;

g+=c*f;
source:b=a-x[i]; /*b is used*/ c=(a+b)*0.5;
object: b=a-x[i]; /*b is used and dead*/

c=2*a-x[i]; c*=0.5;

25

IXPUG Workshop © 2018 H. Nakashima

Closing Remarks
 Compilers for Xeon Phi (AVX-512), especially icc,

generate reasonably efficient codes from C programs
free from directives or intrinsics.

 However, there is still some room of improvement
especially in complicated loop bodies and outside
main bodies.
 Outside code has become important as the effective loop

trip count has been halved or quartered.
 (Micro-)Architectural support is still very welcome.

 Better exception interface of gather/scatter.
 Efficient way to have Opmask for peeling/remainder loops.
 Loop-count-base branch prediction for relatively short loops

(e.g. n=10 or so).
 ...

26

IXPUG Workshop © 2018 H. Nakashima

	Vectorization Quality:�How Well is�Your C Code Compiled?
	Apology
	Introduction
	Supercomputer with Xeon Phi in Kyoto
	How to See the Ability
	Why without Directives?
	Vector Addition: Overview
	Vector Addition:�Loop Structure (1/2)
	Vector Addition:�Loop Structure (2/2)
	Vector Addition:�Main Body (1/5)
	Vector Addition:�Main Body (2/5)
	Vector Addition:�Main Body (3/5)
	Vector Addition:�Main Body (4/5)
	Vector Addition:�Main Body (5/5)
	Vector Addition:�restrict Qualification (1/2)
	Vector Addition:�restrict Qualification (2/2)
	PIC Code: Overview (1/2)
	PIC Code: Overview (2/2)
	PIC Code:�How Complicated
	PIC Code:�Vectorized?
	PIC Code:�Vector Register Allocation
	PIC Code:�Conditionals
	PIC Code:�Reductions
	PIC Code:�Division
	PIC Code:�Peep Holes
	Closing Remarks

