
Vectorization Quality:
How Well is

Your C Code Compiled?

Hiroshi Nakashima
(Kyoto University)

Apology
 I tried to make this talk looking like a keynote by

showing a big picture of SIMD-aware compilation for
Xeon Phi and its successors.

 However unfortunately, I took a wrong way to
prepare this talk, examination of Xeon Phi codes
generated by representative compilers, and found so
many funny things that I cannot resist reporting them
in this talk.

 Therefore, I’m so sorry that this talk has many nerd
(or “otaku” in Japanese) issues about compilers
targeting AVX-512, which however I still hope are
meaningful not only for compiler people but also for
HPC people working on Xeon Phi in general.

2

IXPUG Workshop © 2018 H. Nakashima●

●

Introduction
 Xeon Phi’s key technologies are;

 high per-core DPFP performance of 32FLOP/cycle
achieved by dual-issue 512-bit FMA;

 68 (or 64) x86 cores for up to 272 (or 256) threads;
 high bandwidth (≈500GB/s) MCDRAM;
 and ...

 Per-core performance heavily depends on;
 vectorizability of your innermost loops; and
 ability of your compiler;

 to recognize your loops as vectorizable; and
 to generate good code exploiting AVX-512’s advanced

features (mask, gather/scatter, conflict detection, ...).

 Let’s see the ability of a few compilers.
3

IXPUG Workshop © 2018 H. Nakashima●

●

chassisBlade

Supercomputer with Xeon Phi in Kyoto

opt: 5x2x37.5Gbps BP: 15x1x42Gbps

copper:
5x3x42Gbps

Xeon Phi 7250 (KNL)
1.4GHz x 32 x 68
= 3.06TFlops

MCDRAM
16GB; 921GB/s

DDR4-2133
96GB; 102.4GB/s

copper: 16x15.75GB/s
opt: 60x18.75GB/s

 68C x 1,800 = 122,400C
 5.48PFlops
 28+169=197TB
 15.5TB/s

cabinet x 2

4

IXPUG Workshop © 2018 H. Nakashima

How to See the Ability
 Two programs

 A kind of simple benchmark of c[i]=a[i]+b[i]
and its variants with index arrays.

 A particle-in-cell (PIC) simulation code having
three fairly complicated vectorizable loops.

 Programs are written;
 in C99 so that arrays/pointers in loops are
restrict-ed and multi-dimensional arrays are
variable-size in lower dimensions.

 without any intrinsic functions, compiler-specific
directives, or omp simd pragmas.

 and compiled by;
 icc 17.0.3/18.0.0, craycc 8.6.3 and gcc 7.2.0.

5

IXPUG Workshop © 2018 H. Nakashima

Why without Directives?
 We accept OpenMP’s directive-assisted

parallelization because;
 parallelization has too many alternatives to

choose the best automatically;
 even for a particular method, examining its

applicability is extremely tough; and
 attaching directives is considered as part of

parallel programming rather than tuning.
 SIMD-vectorization has a different story;

 auto-vectorization is much easier than auto-
parallelization; and

 attaching directives to many vectorizable loops is
simply boring and harmful for code maintenance.

6

IXPUG Workshop © 2018 H. Nakashima

Vector Addition: Overview
 Is for(i=0;i<n;i++)body; vectorized?

double *restrict a, *restrict b, *restrict c;
int *restrict xa, *restrict xb, *restrict xc;

7

IXPUG Workshop © 2018 H. Nakashima

body icc17 icc18 craycc gcc
c[i]=a[i]+b[i] Yes Yes Yes Yes
c[i]=a[xa[i]]+b[xb[i]] Yes Yes Yes Yes
c[xc[i]]=
a[xa[i]]+b[xb[i]]

Yes No Yes No

a[i]+=b[i] Yes Yes Yes Yes
a[i]+=b[xb[i]] Yes Yes Yes Yes
a[xa[i]]+=b[xb[i]] Yes No No No

why degrade halving
performance?

Vector Addition:
Loop Structure (1/2)

 Common conceptual structure
for(i=0;(long)(c+i)&0x3f;i++) c[i]=a[i]+b[i];

//peeling
for(;i<(n/16)*16;i++) c[i]=a[i]+b[i]; //main
for(;i<n;i++) c[i]=a[i]+b[i]; //remainder

 Compiler-specific features & #instructions
 Average of all possibilities when icc’s main loop for
c[i]=a[i]+b[i] iterates N-times.

 K=3 is #-of kernel instructions in the main body.

8

IXPUG Workshop © 2018 H. Nakashima

peeling main remainder
icc vectorized

0.9K+43.1=45.8
2way unroll
(2K+3)N=9N

vectorized
1.4K+30.3=34.4

craycc no
14

2way unroll
(2K+10)N=16N

(8+4+2+1)-way
2.9K+18.4=27.0

gcc expanded scalar
(seq of body + if)
3.5K+47.3=57.8

not unrolled

(2K+8)N=14N

expanded scalar
(seq of body + if)
4K+25.6=37.6

Vector Addition:
Loop Structure (2/2)

 Vectorizing peeling & remainder loops
 Exploits Opmask (k0-7) being a new feature of

AVX-512 to vectorize very short loops, up to 7
(peeling) or 15 (remainder).

 Fundamentally good idea and effective especially
when K is large while N is not so large.

 However, the constant overhead of 30 or so
instructions mainly for masking is not negligible
especially when N is very small, e.g. 1 or 2, or
even 0, in SpMV with a CRS matrix.

 The overhead can be reduced by, e.g.;
 eliminating redundant loop-control instructions for a

loop iterating only once.
 introducing new instructions to produce Opmask value

from the loop count (like ARM-SVE’s whilelt). 9

IXPUG Workshop © 2018 H. Nakashima

Vector Addition:
Main Body (1/5)

 icc17=icc18

10

IXPUG Workshop © 2018 H. Nakashima

c[i]=a[i]+b[i] a[i]+=b[i]

vmovups a[i]
vmovups a[i+8]
vaddpd b[i]
vmovupd c[i]=
vaddpd b[i+8]
vmovupd c[i+8]=
addq i+=16
cmpq i<n
jb if(i<n)goto

vmovups a[i]
vmovups a[i+8]
vaddpd b[i]
vmovupd a[i]=
vaddpd b[i+8]
vmovupd a[i+8]=
addq i+=8
cmpq i<n
jb if(i<n)goto

craycc gcc
 Has prefetcht0 for
{abc}[i+{80,88}].

 Not unrolled.

 Has subq/leaq to increment vmovupd's index (=i*8) because it
is not scaled.

Vector Addition:
Main Body (2/5)

 icc17=icc18

 Masking with 11....11 is necessary, but zero-clear (=craycc)
of vgatherdpd’s destination should be redundant.

 craycc & gcc perform 2-way unrolling.
11

IXPUG Workshop © 2018 H. Nakashima

c[i]=a[xa[i]]+b[xb[i]] a[i]+=b[xb[i]]

vmovdqu xa[i]
kxnorw k1=11...11
vmovdqu xb[i]
vpxord aa=0
vpxord bb=0
kxnorw k2=11...11
vgatherdpd aa=a[]{k1}
vgatherdpd bb=b[]{k2}
vaddpd aa+bb
vmovupd c[i]=aa++bb
addq i+=8
cmpq i<n
jb if(i<n)goto

vmovdqu xb[i]
vpxord bb=0
kxnorw k1=11...11
vmovups aa=a[i]
vgatherdpd bb=b[]{k1}
vaddpd aa+bb
vmovupd a[i]=aa+bb
addq i+=8
cmpq i<n
jb if(i<n)goto

Vector Addition:
Main Body (3/5)

 Why ki=11...11 and masking necessary?
 vgatherdpd clears ki for completed elements so

that it can be re-executed when an element causes
memory access fault without accessing
completed elements repeatedly.

 Really necessary?
 vmovupd may cross a page boundary and seems

to be re-executed as a whole when one of two
pages causes memory access fault.

 ARM-SVE’s gather (and scatter) does not have
such a feature.

 But unfortunately, we cannot make vgatherdpd
unmasked because it raises #UD exception (sigh).

12

IXPUG Workshop © 2018 H. Nakashima●

●

Vector Addition:
Main Body (4/5)

 icc17

 craycc performs 2-way unrolling.
13

IXPUG Workshop © 2018 H. Nakashima

c[xc[i]]=a[xa[i]]+b[xb[i]]

vmovdqu xa[i]
kxnorw k1=11...11
vmovdqu xb[i]
vpxord aa=0
vpxord bb=0
kxnorw k2=11...11
vmovdqu xc[i]
addq i+=8
kxnorw k3=11...11
vgatherdpd aa=a[]{k1}
vgatherdpd bb=b[]{k2}
vaddpd aa+bb
vscatterdpd c[]=aa+bb{k3}
cmpq i<n
jb if(i<n)goto

works well even when
xc[i..i+7] has duplications.

Vector Addition:
Main Body (5/5)

 icc17 for a[xa[i]]+=b[xb[i]]

 Complicated code for the case xa[i..i+7] has
duplications, but reasonably efficient if not, and seems
better than serial-if-duplicated in most duplicated cases. 14

IXPUG Workshop © 2018 H. Nakashima

L0:vmovdqu xb[i]
vpxord bb=0
kmovw k2=11...11
vpxord aa=0
vmovdqu xb[i]
kmovw k3=11...11
vgatherdpd bb=b[]{k2}
vmovdqu xa[i]
vpconflictd c=conf(xa[i])
vgatherdpd aa=a[]{k3}
vpmovzxdq discard_upper(c)
vptestmq k0<j>=(c[j]!=0)
vaddpd ab=aa+bb
kmovw g=k0
testl g==0
je if(!g)goto L2
vpbroadcastmb2q for c[j]!=0

vpbroadcastq n[j]=0x3f
vplzcntq m[j]=lz(c[j])
vptestmq k0<j>=(c[j]!=0)
vpsubq n[j]-=m[j]
kmovw g=k0

L1:kmovw k2=g
vpbroadcastmb2q d[j]=k2
vpermpd ab[j]=ab[n[j]]
vaddpd ab+=aa{k2}
vptestmq k0<j>=(c[j]&d[j])
kmovw g=k0
testl g==0
jne if(g)goto L1

L2:addq i+=8
kmovw k2=11...11
vscatterdpd a[]=ab{k2}
cmpq i<n
jb if(i<n)goto L0

Vector Addition:
restrict Qualification (1/2)

 restrict qualification of RHS arrays ensure that
they are not modified by the assignment of LHS
arrays (whose mutual conflicts are also ensured from
happening by restrict-ing them).

 Therefore without restrict-ion we cannot expect, in
general, that a loop is vectorized even when arrays
are actually conflict-free.

 However, icc and craycc dare to vectorize non-
restrict-ed c[i]=a[i]+b[i] (and a[i]+=b[i])
with an inspector to check c−8<a,b<c and a serial
loop for the case this condition holds.
 Personally I don’t love this officious vectorization because it

could make programmers overestimating vectorization
capability.

 Loops with indirection are not vectorized because
inspection is virtually impossible. 15

IXPUG Workshop © 2018 H. Nakashima

Vector Addition:
restrict Qualification (2/2)

 Modification-free nature of RHS arrays may be
guaranteed by another more intuitive qualification,
const for array elements (not for the pointer), but is
this sufficient for your compiler?

 Assuring correctness of const is easier than restrict for both of
programmers and compilers.

 In theory, restrict qualification of LHS arrays is not necessary
because no other arrays appear in LHS.

 However even icc needs restrict for LHS arrays, or generates
codes for the case without restrict at all. 16

IXPUG Workshop © 2018 H. Nakashima

body icc17 icc18 craycc gcc
c[i]=a[i]+b[i] Yes/Yes Yes/Yes Yes/Yes Yes/Yes
c[i]=a[xa[i]]+b[xb[i]] Yes/Yes Yes/Yes Yes/No Yes/No
c[xc[i]]=a[xa[i]]+b[xb[i]] Yes/Yes No/No Yes/No No/No
a[i]+=b[i] Yes/Yes Yes/Yes Yes/Yes Yes/Yes
a[i]+=b[xb[i]] Yes/Yes Yes/Yes Yes/No Yes/No
a[xa[i]]+=b[xb[i]] Yes/Yes No/No No/No No/No

PIC Code: Overview (1/2)
 For each p at xp in a cell whose vertices are

at δxp ;
 Update vp by Lorentz force determined by E and B

at δxp, and then update xp by vp.
 Add the contribution of p’s motion to J at δxp.
 In a naive implementation, E[][][], B[][][],

J[][][] are accessed by xp +{0,1}3 with
gather/scatter.

IXPUG Workshop © 2018 H. Nakashima

)(),(pp xBxE δδ))((pp vxJ −δ)(pxJ δ
ΩΩ ~,

17

PIC Code: Overview (2/2)
 Let each cell c have the set (bin) of all

particles in it.
 Scalarize E/B/J accessed by all p in c.

for(c in cells){
{sE}=Earound(c); {sB}=Baround(c);
for(p in c) v[p]+=lorentz(p,{sE},{sB});
{sJ}=0;
for(p in c)
{{sJ}+=scatter(p); x[p]+=v[p];}
Jaround(c)+={sJ};
for(p in c) migrate(p);

}
for(c in cells){
{sJ}=0; for(p in c) {sJ}+=scatter(p);
Jaround(c)+={sJ};

}

IXPUG Workshop © 2018 H. Nakashima

Since x[] and v[]
are simple SOA-
type arrays,
vectorized well
without gather/
scatter of E/B/J.

18

PIC Code:
How Complicated

 Push-loop for Lorentz acceleration has;
 51 (!!) loop-invariant scalar variables for E (24), B

(24) and the base coordinate of c (3).
 149 DP-FLOPs, including a division, for

interpolation of E/B, cross product in Lorentz
force calculation, etc.

 Two scatter-loops commonly have;
 12 scalar variables to which J’s components are

accumulated, and 6 loop-invariants for the base
coordinate of c.

 73 or 66 DP-FLOPs, including three conditional
expressions, for extrapolation of the contribution
of particle motion to J’s components, etc.

19

IXPUG Workshop © 2018 H. Nakashima

PIC Code:
Vectorized?

 Codes generated by icc17 and icc18 are virtually
equivalent.

 In icc’s code, remainder part of all three loops are
vectorized, as well as peeling part of push and
scatter-2 (while scatter-1 does not have peeling
part).

 In craycc’s code, no loops have peeling part, and
their remainder parts are serial.

20

IXPUG Workshop © 2018 H. Nakashima

body icc17 icc18 craycc gcc
push Yes Yes Yes No
scatter-1 Yes Yes Yes No
scatter-2 Yes Yes Yes No

PIC Code:
Vector Register Allocation

 For push-loop, icc manages to allocate 16 loop-
invariants out of 51 and 2 constants to vector
registers, while only 14 registers are used for
local/temporary variables.

 Even with this good allocation, 35 loop-invariants
(and a constant) are kept in memory in fully
expanded form (i.e., one variable consumes 64B).
 64B×35=2240B is not small and consumes 6.8% of 32KB L1-

Dcache.
 By exploiting m64bcst feature, this consumption can be

reduced to 280B or 0.85% of L1D.
 Spilled constant is loaded by vbroadcastsd.

 For two scatter-loops, icc does almost perfect game.
 One constant of scatter-1 is spilled, while three array

elements are loaded twice to reduce register consumption.
21

IXPUG Workshop © 2018 H. Nakashima

PIC Code:
Conditionals

 Two scatter-loops commonly have;
xr=(x0==x1)?(px0+px1)*0.5:((x0<x1)?x1:x0);

 This conditional expression does not inhibit
vectorization in both of icc and craycc;
 Both compilers exploit Opmask.
 icc is a little bit cleverer because it makes vmulpd for
(px0+px1)*0.5 masked to overwrite the result of
fmax(x0,x1), rather than choosing them by masked
vmovapd.

 However, we cannot expect that loops with any
conditionals are vectorized.
 e.g., for() c[i]=a[i]==0.0?f(a[i],b[i]):a[i]+b[i];

is not vectorized.
 Partial vectorization for the case a[i..i+7]!=0 seems to be

future work (or needs some directive to force vectorization).
22

IXPUG Workshop © 2018 H. Nakashima

PIC Code:
Reductions

 Summing up 8 partial sums
 icc

 icc’s code has two more instructions but its critical path is
shorter, by one instruction of moving vector elements.

 Seems efficient even in short vector cases (e.g., dot product
for CRS-SpMV).

23

IXPUG Workshop © 2018 H. Nakashima

+ +

+

+ + +
+

vextractf64x4

vaddpd
vaddsd

vaddsd

vaddsd
valignq
valignq
valignq

vextractf64x4

vextractf128

vpermilpd

vaddpd vaddpd vaddsd

PIC Code:
Division

 Push-loop has q=2.0/d
  (1/d’)=vrcp28pd(d);
 (1/d)=2*(1/d’)-d*(1/d’)*(1/d’);

 icc
(1/d)=(1/d’)*(1-d*(1/d’))+(1/d’);
q=2*(1/d);
if ((1/d)==NAN) q=vdivid(2,d);

 craycc
temp=2-d*(1/d’);(2/d’)=(1/d’)+(1/d’);
q=temp*(2/d’);

24

IXPUG Workshop © 2018 H. Nakashima

Optimization(?) for numerator=2.
In general, it will be;
(num/d’)=num*(1/d’)

Is this exception handling necessary?

PIC Code:
Peep Holes

 icc aggressively apply compile-time
evaluation of arithmetic expressions.
 Good example

source:c=a*b; e=c-d; g=a-c; //a is dead here
object: e=a; e=e*b-d; g=a-a*b; //g uses a’s reg

 Bad examples
source:c=a*b; d=a-c; e=b-c; g+=c*f;

//a and b are alive
object: c=a*b; d=a; d=a-d*b; e=a; e=b-e*b;

g+=c*f;
source:b=a-x[i]; /*b is used*/ c=(a+b)*0.5;
object: b=a-x[i]; /*b is used and dead*/

c=2*a-x[i]; c*=0.5;

25

IXPUG Workshop © 2018 H. Nakashima

Closing Remarks
 Compilers for Xeon Phi (AVX-512), especially icc,

generate reasonably efficient codes from C programs
free from directives or intrinsics.

 However, there is still some room of improvement
especially in complicated loop bodies and outside
main bodies.
 Outside code has become important as the effective loop

trip count has been halved or quartered.
 (Micro-)Architectural support is still very welcome.

 Better exception interface of gather/scatter.
 Efficient way to have Opmask for peeling/remainder loops.
 Loop-count-base branch prediction for relatively short loops

(e.g. n=10 or so).
 ...

26

IXPUG Workshop © 2018 H. Nakashima

	Vectorization Quality:�How Well is�Your C Code Compiled?
	Apology
	Introduction
	Supercomputer with Xeon Phi in Kyoto
	How to See the Ability
	Why without Directives?
	Vector Addition: Overview
	Vector Addition:�Loop Structure (1/2)
	Vector Addition:�Loop Structure (2/2)
	Vector Addition:�Main Body (1/5)
	Vector Addition:�Main Body (2/5)
	Vector Addition:�Main Body (3/5)
	Vector Addition:�Main Body (4/5)
	Vector Addition:�Main Body (5/5)
	Vector Addition:�restrict Qualification (1/2)
	Vector Addition:�restrict Qualification (2/2)
	PIC Code: Overview (1/2)
	PIC Code: Overview (2/2)
	PIC Code:�How Complicated
	PIC Code:�Vectorized?
	PIC Code:�Vector Register Allocation
	PIC Code:�Conditionals
	PIC Code:�Reductions
	PIC Code:�Division
	PIC Code:�Peep Holes
	Closing Remarks

