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 Quantum Chemistry (QC):

 Studies chemical systems by solving Schrodinger differential 

equation

 The solution for Schrodinger equation is approximate

 The input is the coordinates of atoms of the chemical system

 The output is a wavefunction, which describes all chemical and 

physical properties of the chemical system
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 QC has a large variety of methods

 Computational aspects:

 Many computational bottlenecks 

 Some methods do not use BLAS

 Variety of data structures

 Not all of methods can be easily and efficiently parallelized 

 Dependency between QC methods

 Lack of optimized QC libraries

 High CPU and memory demands

 Computational complexity of ab initio methods is O(N4) and higher

 Double precision is required for chemical accuracy



GAMESS
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 Advantages:
 One of the most popular QC programs (>10K user base)

 Many QC methods are implemented in GAMESS

 Free open-source code (custom license)

 Challenges:
 Legacy code developed decades ago written in Fortran 77

 Poor cache utilization

 Hard to thread because of shared data structures (i.e. COMMON blocks)

 Our approach:
 Rewrite and optimize code using modern languages

 OpenMP parallelization and vectorization

 Develop new algorithms

 Goal:
 Optimization of GAMESS for massively parallel architectures



Benefits of using Intel Xeon Phi architecture
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 Relatively straight forward porting and optimization of old 

Fortran code

 Xeon Phis are especially good for high level parallelism 

using large kernels

 Simultaneous performance improvement on both Xeon 

and Xeon Phi platforms



Theta supercomputer
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 System:

 Cray XC40 system installed in ALCF

 3,624 compute nodes/ 231,936 cores

 9.65 PetaFlops peak performance

 Processor:

 Intel Xeon Phi, 2nd Generation 7230

 64 Cores

 1.3 GHz base

 Memory:

 16 GB MCDRAM per node

 192 GB DDR4-2400 per node 

 754 TB of total system memory

 Network:

 Cray Aries interconnect

 Dragonfly network topology

 Filesystems:

 Project directories: 10 PB Lustre file system

 Home directories: GPFS

Chip
 683 mm²
 14 nm process
 8 Billion transistors

Up to 72 Cores

36 tiles

2 cores per tile

3 TF per node

2D Mesh Interconnect

Tiles connected by 2D mesh

On Package Memory

16 GB MCDRAM

8 Stacks

485 GB/s bandwidth

6 DDR4 memory channels

2 controllers 

up to 384 GB external DDR4

90 GB/s bandwidth

On Socket Networking

Omni-Path NIC on package

Connected by PCIe



Hartree-Fock (HF) method

7

 One of the first ab initio methods

 Basis for many other QC methods

 Self-consistent solution of the Hartree-Fock equations in matrix form:

𝑭𝑪 = 𝜖𝑺𝑪
𝑭 – Fock matrix,
𝑪 – wavefunction expansion in the selected basis set,
𝑺 – matrix of the basis function overlap,
𝜖 – vector of orbital energies

 Computational complexity is Ο(𝑁4)

 HF requires calculation of 𝑁4 two-electron repulsion integrals (ERIs)

 Screening techniques decrease time complexity down to Ο 𝑁2.5 − Ο 𝑁3

 Memory requirements are from Ο(𝑁2) for “direct” HF to Ο(𝑁4) for disk-based 
methods



MPI parallelization algorithm
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 Four nested loops over shells

 “Triangular” loop structure

 Schwartz screening to skip small ERI 
values (default: less than 10-10)

 Original MPI-only implementation:

 MPI dynamic job load balance over top 
two shell loops

 Fock matrix reduction across all MPI 
ranks at the end of HF iteration

 All data structures (i.e. Fock and density 
matrices) are replicated

 Drawbacks of GAMESS implementation:

 High memory footprint

 Poor scalability of HF on a large number 
of MPI ranks because of 2-index load 
balancer



Shared Fock matrix algorithm
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 Each (𝑖, 𝑗|𝑘, 𝑙) combination of indices requires 

up to six updates:

𝐹𝑘𝑙 ← 𝑖, 𝑗 𝑘, 𝑙 ⋅ 𝐷𝑖𝑗

𝐹𝑖𝑗 ← 𝑖, 𝑗 𝑘, 𝑙 ⋅ 𝐷𝑘𝑙

𝐹𝑖𝑘 ← (𝑖, 𝑗|𝑘, 𝑙) ⋅ 𝐷𝑗𝑙
𝐹𝑖𝑙 ← 𝑖, 𝑗 𝑘, 𝑙 ⋅ 𝐷𝑗𝑘
𝐹𝑗𝑙 ← 𝑖, 𝑗 𝑘, 𝑙 ⋅ 𝐷𝑖𝑘

𝐹𝑗𝑘 ← (𝑖, 𝑗|𝑘, 𝑙) ⋅ 𝐷𝑖𝑙

 𝐹𝑖𝑗 , 𝐹𝑖𝑘 , 𝐹𝑖𝑙 updates are accumulated in 𝐹𝑖 vector

 𝐹𝑗l, 𝐹j𝑘 updates are accumulated in 𝐹j vector

 𝐹𝑖 and 𝐹j vectors are summed and update F 

matrix when the corresponding index changes

Thread safe update

Unsafe update of

𝐹𝑖𝑥 elements 

Unsafe update of

𝐹j𝑥 elements 
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 Each (𝑖, 𝑗|𝑘, 𝑙) combination of indices requires 

up to six updates:

𝐹𝑘𝑙 ← 𝑖, 𝑗 𝑘, 𝑙 ⋅ 𝐷𝑖𝑗

𝐹𝑖𝑗 ← 𝑖, 𝑗 𝑘, 𝑙 ⋅ 𝐷𝑘𝑙

𝐹𝑖𝑘 ← (𝑖, 𝑗|𝑘, 𝑙) ⋅ 𝐷𝑗𝑙
𝐹𝑖𝑙 ← 𝑖, 𝑗 𝑘, 𝑙 ⋅ 𝐷𝑗𝑘
𝐹𝑗𝑙 ← 𝑖, 𝑗 𝑘, 𝑙 ⋅ 𝐷𝑖𝑘

𝐹𝑗𝑘 ← (𝑖, 𝑗|𝑘, 𝑙) ⋅ 𝐷𝑖𝑙

 𝐹𝑖𝑗 , 𝐹𝑖𝑘 , 𝐹𝑖𝑙 updates are accumulated in 𝐹𝑖 vector

 𝐹𝑗l, 𝐹j𝑘 updates are accumulated in 𝐹j vector

 𝐹𝑖 and 𝐹j vectors are summed and update F 

matrix when the corresponding index changes

Thread safe update

Unsafe update of

𝐹𝑖𝑥 elements 

Unsafe update of

𝐹j𝑥 elements 

I and J vectors update

I and J vectors summation

Use of I and J vectors:
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Memory on Theta nodes

Setup: MPI-only HF algorithm – 256 MPI ranks/processor; Private and Shared Fock algorithms – 1 MPI ranks/processor, 256 threads/MPI rank



MPI/OpenMP scaling on single Xeon Phi node
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 Chemical system: 1.0 nm graphene 

bilayer (С120,1800 basis functions)

 Single Intel Xeon Phi processor

 MPI/OpenMP versions of HF method 

run faster than the original MPI-only 

code by ~2.5 times

 MPI-only code can run maximum on 

128 hardware threads because of large 

memory requirements per MPI rank

 MPI/OpenMP hybrid versions of HF 

method can utilize all 256 hardware 

threads



Scaling on 512 Xeon Phi processors
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 Chemical system: 2.0 nm graphene 

bilayer (C356, 5340 basis functions)

 512 KNL processors on Theta 

supercomputer installed in ALCF

 Quadrant-cache KNL modes

 OpenMP shared Fock algorithm scales 

close to ideal

 OpenMP shared Fock algorithm runs 

~6 times faster than MPI-only code

 MPI-only original GAMESS algorithm 

does not scale beyond 256 processors



Scaling on 3,000 Xeon Phi processors
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 Chemical system: 5.0 nm graphene 

bilayer (2,016 atoms; 30,240 basis 

functions)

 Scaling is demonstrated for 

MPI/OpenMP shared Fock code

 Memory requirements for MPI-only 

code vastly larger compared to 

MPI/OpenMP shared Fock code

 Code scales on 3,000 Theta KNL 

processors

 Quadrant-cache KNL modes

 4 MPI ranks per node, 64 threads per 

rank



Conclusions
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 Developed new OpenMP/HF algorithms

 Sped up code up to 6 times

 Memory footprint is reduced by up to ~200 times

 Scaled code on 3,000 KNL processors (192,000 cores)

 OpenMP/HF algorithms are implemented in released version of GAMESS:

 Hybrid MPI/OpenMP energy code for RHF, UHF, ROHF, and Coulomb part of 

DFT exchange-correlation energy

 Hybrid MPI/OpenMP gradient code for RHF, UHF, ROHF, and Coulomb part of 

DFT exchange-correlation energy

 Code is available on GAMESS website:

http://www.msg.ameslab.gov/gamess/download.html

http://www.msg.ameslab.gov/gamess/download.html
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TAU Profiles
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Profile collection details:

 Theta 512 KNL processors

 All measurements were performed 

on MPI rank 0/OpenMP thread 0

 Original MPI code:

128 MPI ranks per node, total 

65,536 ranks

 Both OpenMP codes:

4 MPI ranks per node and 64 

threads per rank, total 2,048 ranks

 All times are exclusive and 

measured in seconds

Operation

Time, s

MPI,

original

MPI/OMP

priv. Fock

MPI/OMP

shr. Fock

MPI_Broadact 234 70 62

MPI_AllReduce 264 109 111

MPI_Barrier 25 40 7

OpenMP region N/A 15 50


