An efficient MPI/OpenMP parallelization of the Hartree-Fock method for the second generation of Intel[®] Xeon Phi[™] processor

Yuri Alexeev¹, Vladimir Mironov², Kristopher Keipert^{1,3}, Michael D'Mello⁴, Alexander Moskovsky², Mark Gordon³

> ¹Argonne National Laboratory, ²Moscow State University,, ³Iowa State University, ⁴Intel Corporation

Leadership Computing Facility

Introduction

- Quantum Chemistry (QC):
 - Studies chemical systems by solving Schrodinger differential equation
 - The solution for Schrodinger equation is approximate
 - The input is the coordinates of atoms of the chemical system
 - The output is a wavefunction, which describes all chemical and physical properties of the chemical system

Introduction

- QC has a large variety of methods
- Computational aspects:
 - Many computational bottlenecks
 - Some methods do not use BLAS
 - Variety of data structures
 - Not all of methods can be easily and efficiently parallelized
 - Dependency between QC methods
 - Lack of optimized QC libraries
- High CPU and memory demands
 - Computational complexity of ab initio methods is O(N⁴) and higher
- Double precision is required for chemical accuracy

GAMESS

- Advantages:
 - One of the most popular QC programs (>10K user base)
 - Many QC methods are implemented in GAMESS
 - Free open-source code (custom license)
- Challenges:
 - Legacy code developed decades ago written in Fortran 77
 - Poor cache utilization
 - Hard to thread because of shared data structures (i.e. COMMON blocks)
- Our approach:
 - Rewrite and optimize code using modern languages
 - OpenMP parallelization and vectorization
 - Develop new algorithms
- Goal:
 - Optimization of GAMESS for massively parallel architectures

Benefits of using Intel Xeon Phi architecture

- Relatively straight forward porting and optimization of old Fortran code
- Xeon Phis are especially good for high level parallelism using large kernels
- Simultaneous performance improvement on both Xeon and Xeon Phi platforms

Theta supercomputer

System:

- Cray XC40 system installed in ALCF
- 3,624 compute nodes/ 231,936 cores
- 9.65 PetaFlops peak performance

Processor:

- Intel Xeon Phi, 2nd Generation 7230
- 64 Cores
- 1.3 GHz base

Memory:

- 16 GB MCDRAM per node
- > 192 GB DDR4-2400 per node
- 754 TB of total system memory

Network:

- Cray Aries interconnect
- Dragonfly network topology

Filesystems:

- Project directories: 10 PB Lustre file system
- Home directories: GPFS

Chip

- 683 mm²
- 14 nm process
- 8 Billion transistors

Up to 72 Cores

- 36 tiles
- 2 cores per tile
- 3 TF per node

2D Mesh Interconnect

Tiles connected by 2D mesh

On Package Memory

- 16 GB MCDRAM
- 8 Stacks
- 485 GB/s bandwidth

6 DDR4 memory channels

- 2 controllers
- up to 384 GB external DDR4
- 90 GB/s bandwidth

On Socket Networking

- Omni-Path NIC on package
- Connected by PCIe

Hartree-Fock (HF) method

- One of the first ab initio methods
- Basis for many other QC methods
- Self-consistent solution of the Hartree-Fock equations in matrix form:

$$FC = \epsilon SC$$

- F Fock matrix,
- C wavefunction expansion in the selected basis set,
- S matrix of the basis function overlap,
- ϵ vector of orbital energies
- Computational complexity is $O(N^4)$
- HF requires calculation of N^4 two-electron repulsion integrals (ERIs)
- Screening techniques decrease time complexity down to $O(N^{2.5}) O(N^3)$
- Memory requirements are from $O(N^2)$ for "direct" HF to $O(N^4)$ for disk-based methods

MPI parallelization algorithm

- Four nested loops over shells
- "Triangular" loop structure
- Schwartz screening to skip small ERI values (default: less than 10⁻¹⁰)
- Original MPI-only implementation:
 - MPI dynamic job load balance over top two shell loops
 - Fock matrix reduction across all MPI ranks at the end of HF iteration
 - All data structures (i.e. Fock and density matrices) are replicated
- Drawbacks of GAMESS implementation:
 - High memory footprint
 - Poor scalability of HF on a large number of MPI ranks because of 2-index load balancer

```
1: for i = 1, NShells do
        for i = 1, i do
 2:
             call ddi_dlbnext(ij) > MPI DLB: check I and J indices
 3:
             for k = 1, i do
 4:
                 k = i ? l_{max} \leftarrow k : l_{max} \leftarrow i
 5:
                 for l = 1, l_{max} do
 6:
    ▶ Schwartz screening:
                      screened \leftarrow schwartz(i, j, k, l)
 7:
                      if not screened then
 8:
                          call \operatorname{eri}(i, j, k, l, X_{iikl}) \triangleright \operatorname{Calculate}(i, j|k, l)
 9:
    ▶ Update process-local 2e-Fock matrix:
                          Fock_{ii,kl,ik,il,il,ik} +=
10:
                                   X_{iikl} \cdot D_{kl,ii,il,ik,ik,il}
                      end if
11:
                 end for
12:
             end for
13:
        end for
14:
15: end for
    ▶ 2e-Fock matrix reduction over MPI ranks:
16: call ddi_gsumf(Fock)
```

Shared Fock matrix algorithm

Each (i, j|k, l) combination of indices requires up to six updates:

> $F_{kl} \leftarrow (i, j | k, l) \cdot D_{ii}$ $F_{ii} \leftarrow (i, j | k, l) \cdot D_{kl}$ $F_{ik} \leftarrow (i, j | k, l) \cdot D_{il}$ $F_{il} \leftarrow (i, j | k, l) \cdot D_{jk}$ $F_{il} \leftarrow (i, j | k, l) \cdot D_{ik}$ $F_{ik} \leftarrow (i, j | k, l) \cdot D_{il}$

Thread safe update

Unsafe update of F_{ix} elements

Unsafe update of F_{ix} elements

- F_{ii}, F_{ik}, F_{il} updates are accumulated in F_i vector
- F_{il} , F_{ik} updates are accumulated in F_i vector
- **F**_i and **F**_i vectors are summed and update F matrix when the corresponding index changes

6:	Тоор			
7:	!\$omp master			
8:	call ddi₋dlbnext(<i>ij</i>) ⊳ MPI DLB: get new combined IJ index			
9:	!\$omp end master			
10:	!\$omp barrier			
11:	$i, j \leftarrow ij$			
12:	$kl_{max} \leftarrow i, j$			
13:	$screened \leftarrow schwartz(i, j, i, j) $ \triangleright I and J prescreening			
14:	if not screened then			
15:	if $i \neq i_{old}$ then \triangleright If <i>i</i> was changed flush F_I			
16:	$Fock(:, i) + = \sum F_I(:, 1:nthreads)$			
17:	!\$omp barrier			
18:	end if			
19:	!\$omp do schedule(dynamic,1)			
20:	for $kl = 1$, kl_{max} do			
21:	$k, l \leftarrow kl$			
22:	screened \leftarrow schwartz(<i>i</i> , <i>j</i> , <i>k</i> , <i>l</i>) \triangleright Schwartz screening			
23:	if not screened then			
24:	call $\operatorname{eri}(i, j, k, l, X_{ijkl}) $ \triangleright Calculate $(i, j k, l)$			
	Update private partial Fock matrices:			
25:	$F_{I}(:, ithread)_{j,k,l} + = X_{ijkl} \cdot D_{kl,jl,jk}$			
26:	$F_{J}(:, ithread)_{k,l} + = X_{ijkl} \cdot D_{il,ik}$			
	▶ Update shared Fock matrix:			
27:	$Fock(k, l) + = X_{ijkl} \cdot D(i, j)$			
28:	end if			
29:	end for			
30:	!\$omp end do			
31:	$Fock(:, j) + = \sum F_j(:, 1:nthreads) $ \triangleright Flush F_j			
32:	!\$omp barrier			
33:	$l_{old} \leftarrow l$			
34:				
35:	ena loop			
	\triangleright Flush remainder F_i contribution to <i>Fock</i> :			
36:	$Fock(:, i) + = \sum F_I(:, 1:nthreads)$			

Shared Fock matrix algorithm

Each (i, j|k, l) combination of indices requires up to six updates:

> $F_{kl} \leftarrow (i, j | k, l) \cdot D_{ii}$ Thread safe update I and J vectors update thr 1thr 2 $F_{ij} \leftarrow (i, j | k, l) \cdot D_{kl}$ bf 1 Unsafe update of $F_{ik} \leftarrow (i, j | k, l) \cdot D_{il}$ bf 2 $F_{i\gamma}$ elements $F_{il} \leftarrow (i, j | k, l) \cdot D_{jk}$. . . $F_{il} \leftarrow (i, j | k, l) \cdot D_{ik}$ Unsafe update of bf N F_{ix} elements $F_{ik} \leftarrow (i, j | k, l) \cdot D_{il}$

- F_{ii}, F_{ik}, F_{il} updates are accumulated in F_i vector
- F_{il}, F_{ik} updates are accumulated in F_i vector
- F_i and F_i vectors are summed and update F matrix when the corresponding index changes

thr M

Use of I and J vectors:

Memory requirements

Setup: MPI-only HF algorithm – 256 MPI ranks/processor; Private and Shared Fock algorithms – 1 MPI ranks/processor, 256 threads/MPI rank

11

MPI/OpenMP scaling on single Xeon Phi node

- Chemical system: 1.0 nm graphene bilayer (C₁₂₀,1800 basis functions)
- Single Intel Xeon Phi processor
- MPI/OpenMP versions of HF method run faster than the original MPI-only code by ~2.5 times
- MPI-only code can run maximum on 128 hardware threads because of large memory requirements per MPI rank
- MPI/OpenMP hybrid versions of HF method can utilize all 256 hardware threads

Scaling on 512 Xeon Phi processors

- Chemical system: 2.0 nm graphene bilayer (C₃₅₆, 5340 basis functions)
- 512 KNL processors on Theta supercomputer installed in ALCF
- Quadrant-cache KNL modes
- OpenMP shared Fock algorithm scales close to ideal
- OpenMP shared Fock algorithm runs
 ~6 times faster than MPI-only code
- MPI-only original GAMESS algorithm does not scale beyond 256 processors

Scaling on 3,000 Xeon Phi processors

- Chemical system: 5.0 nm graphene bilayer (2,016 atoms; 30,240 basis functions)
- Scaling is demonstrated for MPI/OpenMP shared Fock code
- Memory requirements for MPI-only code vastly larger compared to MPI/OpenMP shared Fock code
- Code scales on 3,000 Theta KNL processors
- Quadrant-cache KNL modes
- 4 MPI ranks per node, 64 threads per rank

Conclusions

- Developed new OpenMP/HF algorithms
- Sped up code up to 6 times
- Memory footprint is reduced by up to ~200 times
- Scaled code on 3,000 KNL processors (192,000 cores)
- OpenMP/HF algorithms are implemented in released version of GAMESS:
 - Hybrid MPI/OpenMP energy code for RHF, UHF, ROHF, and Coulomb part of DFT exchange-correlation energy
 - Hybrid MPI/OpenMP gradient code for RHF, UHF, ROHF, and Coulomb part of DFT exchange-correlation energy
- Code is available on GAMESS website: <u>http://www.msg.ameslab.gov/gamess/download.html</u>

Acknowledgments

- This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357
- We gratefully acknowledge the computing resources provided and operated by the Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory
- Vladimir Mironov thanks Intel® Parallel Compute Center program for funding
- The authors would like to thank the RSC Technologies staff for discussion and help related to the paper and for providing Intel Xeon Phi development platform
- The authors thank Sameer Shende for help with TAU profiling

TAU Profiles

Profile collection details:

- Theta 512 KNL processors
- All measurements were performed on MPI rank 0/OpenMP thread 0
- Original MPI code: 128 MPI ranks per node, total 65,536 ranks
- Both OpenMP codes:
 4 MPI ranks per node and 64 threads per rank, total 2,048 ranks
- All times are exclusive and measured in seconds

Oneration	Time, s		
Operation	MPI, original	MPI/OMP priv. Fock	MPI/OMP shr. Fock
MPI_Broadact	234	70	62
MPI_AllReduce	264	109	111
MPI_Barrier	25	40	7
OpenMP region	N/A	15	50