
An efficient MPI/OpenMP parallelization of

the Hartree-Fock method for the second

generation of Intel® Xeon Phi™ processor

Yuri Alexeev1, Vladimir Mironov2, Kristopher Keipert1,3,

Michael D’Mello4, Alexander Moskovsky2, Mark Gordon3

1Argonne National Laboratory, 2Moscow State University,,
3Iowa State University, 4Intel Corporation

Introduction

2

 Quantum Chemistry (QC):

 Studies chemical systems by solving Schrodinger differential

equation

 The solution for Schrodinger equation is approximate

 The input is the coordinates of atoms of the chemical system

 The output is a wavefunction, which describes all chemical and

physical properties of the chemical system

Introduction

3

 QC has a large variety of methods

 Computational aspects:

 Many computational bottlenecks

 Some methods do not use BLAS

 Variety of data structures

 Not all of methods can be easily and efficiently parallelized

 Dependency between QC methods

 Lack of optimized QC libraries

 High CPU and memory demands

 Computational complexity of ab initio methods is O(N4) and higher

 Double precision is required for chemical accuracy

GAMESS

4

 Advantages:
 One of the most popular QC programs (>10K user base)

 Many QC methods are implemented in GAMESS

 Free open-source code (custom license)

 Challenges:
 Legacy code developed decades ago written in Fortran 77

 Poor cache utilization

 Hard to thread because of shared data structures (i.e. COMMON blocks)

 Our approach:
 Rewrite and optimize code using modern languages

 OpenMP parallelization and vectorization

 Develop new algorithms

 Goal:
 Optimization of GAMESS for massively parallel architectures

Benefits of using Intel Xeon Phi architecture

5

 Relatively straight forward porting and optimization of old

Fortran code

 Xeon Phis are especially good for high level parallelism

using large kernels

 Simultaneous performance improvement on both Xeon

and Xeon Phi platforms

Theta supercomputer

6

 System:

 Cray XC40 system installed in ALCF

 3,624 compute nodes/ 231,936 cores

 9.65 PetaFlops peak performance

 Processor:

 Intel Xeon Phi, 2nd Generation 7230

 64 Cores

 1.3 GHz base

 Memory:

 16 GB MCDRAM per node

 192 GB DDR4-2400 per node

 754 TB of total system memory

 Network:

 Cray Aries interconnect

 Dragonfly network topology

 Filesystems:

 Project directories: 10 PB Lustre file system

 Home directories: GPFS

Chip
 683 mm²
 14 nm process
 8 Billion transistors

Up to 72 Cores

36 tiles

2 cores per tile

3 TF per node

2D Mesh Interconnect

Tiles connected by 2D mesh

On Package Memory

16 GB MCDRAM

8 Stacks

485 GB/s bandwidth

6 DDR4 memory channels

2 controllers

up to 384 GB external DDR4

90 GB/s bandwidth

On Socket Networking

Omni-Path NIC on package

Connected by PCIe

Hartree-Fock (HF) method

7

 One of the first ab initio methods

 Basis for many other QC methods

 Self-consistent solution of the Hartree-Fock equations in matrix form:

𝑭𝑪 = 𝜖𝑺𝑪
𝑭 – Fock matrix,
𝑪 – wavefunction expansion in the selected basis set,
𝑺 – matrix of the basis function overlap,
𝜖 – vector of orbital energies

 Computational complexity is Ο(𝑁4)

 HF requires calculation of 𝑁4 two-electron repulsion integrals (ERIs)

 Screening techniques decrease time complexity down to Ο 𝑁2.5 − Ο 𝑁3

 Memory requirements are from Ο(𝑁2) for “direct” HF to Ο(𝑁4) for disk-based
methods

MPI parallelization algorithm

8

 Four nested loops over shells

 “Triangular” loop structure

 Schwartz screening to skip small ERI
values (default: less than 10-10)

 Original MPI-only implementation:

 MPI dynamic job load balance over top
two shell loops

 Fock matrix reduction across all MPI
ranks at the end of HF iteration

 All data structures (i.e. Fock and density
matrices) are replicated

 Drawbacks of GAMESS implementation:

 High memory footprint

 Poor scalability of HF on a large number
of MPI ranks because of 2-index load
balancer

Shared Fock matrix algorithm

9

 Each (𝑖, 𝑗|𝑘, 𝑙) combination of indices requires

up to six updates:

𝐹𝑘𝑙 ← 𝑖, 𝑗 𝑘, 𝑙 ⋅ 𝐷𝑖𝑗

𝐹𝑖𝑗 ← 𝑖, 𝑗 𝑘, 𝑙 ⋅ 𝐷𝑘𝑙

𝐹𝑖𝑘 ← (𝑖, 𝑗|𝑘, 𝑙) ⋅ 𝐷𝑗𝑙
𝐹𝑖𝑙 ← 𝑖, 𝑗 𝑘, 𝑙 ⋅ 𝐷𝑗𝑘
𝐹𝑗𝑙 ← 𝑖, 𝑗 𝑘, 𝑙 ⋅ 𝐷𝑖𝑘

𝐹𝑗𝑘 ← (𝑖, 𝑗|𝑘, 𝑙) ⋅ 𝐷𝑖𝑙

 𝐹𝑖𝑗 , 𝐹𝑖𝑘 , 𝐹𝑖𝑙 updates are accumulated in 𝐹𝑖 vector

 𝐹𝑗l, 𝐹j𝑘 updates are accumulated in 𝐹j vector

 𝐹𝑖 and 𝐹j vectors are summed and update F

matrix when the corresponding index changes

Thread safe update

Unsafe update of

𝐹𝑖𝑥 elements

Unsafe update of

𝐹j𝑥 elements

Shared Fock matrix algorithm

10

 Each (𝑖, 𝑗|𝑘, 𝑙) combination of indices requires

up to six updates:

𝐹𝑘𝑙 ← 𝑖, 𝑗 𝑘, 𝑙 ⋅ 𝐷𝑖𝑗

𝐹𝑖𝑗 ← 𝑖, 𝑗 𝑘, 𝑙 ⋅ 𝐷𝑘𝑙

𝐹𝑖𝑘 ← (𝑖, 𝑗|𝑘, 𝑙) ⋅ 𝐷𝑗𝑙
𝐹𝑖𝑙 ← 𝑖, 𝑗 𝑘, 𝑙 ⋅ 𝐷𝑗𝑘
𝐹𝑗𝑙 ← 𝑖, 𝑗 𝑘, 𝑙 ⋅ 𝐷𝑖𝑘

𝐹𝑗𝑘 ← (𝑖, 𝑗|𝑘, 𝑙) ⋅ 𝐷𝑖𝑙

 𝐹𝑖𝑗 , 𝐹𝑖𝑘 , 𝐹𝑖𝑙 updates are accumulated in 𝐹𝑖 vector

 𝐹𝑗l, 𝐹j𝑘 updates are accumulated in 𝐹j vector

 𝐹𝑖 and 𝐹j vectors are summed and update F

matrix when the corresponding index changes

Thread safe update

Unsafe update of

𝐹𝑖𝑥 elements

Unsafe update of

𝐹j𝑥 elements

I and J vectors update

I and J vectors summation

Use of I and J vectors:

0.03125

0.125

0.5

2

8

32

128

512

2048

8192

32 64 128 256 512 1024 2048

R
e

q
u

ir
e

d
 m

e
m

o
ry

,
G

B
/n

o
d

e

Number of carbon atoms

MPI Shared Fock Private Fock

Memory requirements

11

Memory on Theta nodes

Setup: MPI-only HF algorithm – 256 MPI ranks/processor; Private and Shared Fock algorithms – 1 MPI ranks/processor, 256 threads/MPI rank

MPI/OpenMP scaling on single Xeon Phi node

12

 Chemical system: 1.0 nm graphene

bilayer (С120,1800 basis functions)

 Single Intel Xeon Phi processor

 MPI/OpenMP versions of HF method

run faster than the original MPI-only

code by ~2.5 times

 MPI-only code can run maximum on

128 hardware threads because of large

memory requirements per MPI rank

 MPI/OpenMP hybrid versions of HF

method can utilize all 256 hardware

threads

Scaling on 512 Xeon Phi processors

13

 Chemical system: 2.0 nm graphene

bilayer (C356, 5340 basis functions)

 512 KNL processors on Theta

supercomputer installed in ALCF

 Quadrant-cache KNL modes

 OpenMP shared Fock algorithm scales

close to ideal

 OpenMP shared Fock algorithm runs

~6 times faster than MPI-only code

 MPI-only original GAMESS algorithm

does not scale beyond 256 processors

Scaling on 3,000 Xeon Phi processors

14

 Chemical system: 5.0 nm graphene

bilayer (2,016 atoms; 30,240 basis

functions)

 Scaling is demonstrated for

MPI/OpenMP shared Fock code

 Memory requirements for MPI-only

code vastly larger compared to

MPI/OpenMP shared Fock code

 Code scales on 3,000 Theta KNL

processors

 Quadrant-cache KNL modes

 4 MPI ranks per node, 64 threads per

rank

Conclusions

15

 Developed new OpenMP/HF algorithms

 Sped up code up to 6 times

 Memory footprint is reduced by up to ~200 times

 Scaled code on 3,000 KNL processors (192,000 cores)

 OpenMP/HF algorithms are implemented in released version of GAMESS:

 Hybrid MPI/OpenMP energy code for RHF, UHF, ROHF, and Coulomb part of

DFT exchange-correlation energy

 Hybrid MPI/OpenMP gradient code for RHF, UHF, ROHF, and Coulomb part of

DFT exchange-correlation energy

 Code is available on GAMESS website:

http://www.msg.ameslab.gov/gamess/download.html

http://www.msg.ameslab.gov/gamess/download.html

Acknowledgments

16

 This research used resources of the Argonne Leadership Computing Facility,

which is a DOE Office of Science User Facility supported under Contract

DE-AC02-06CH11357

 We gratefully acknowledge the computing resources provided and operated

by the Joint Laboratory for System Evaluation (JLSE) at Argonne National

Laboratory

 Vladimir Mironov thanks Intel® Parallel Compute Center program for funding

 The authors would like to thank the RSC Technologies staff for discussion

and help related to the paper and for providing Intel Xeon Phi development

platform

 The authors thank Sameer Shende for help with TAU profiling

TAU Profiles

17

Profile collection details:

 Theta 512 KNL processors

 All measurements were performed

on MPI rank 0/OpenMP thread 0

 Original MPI code:

128 MPI ranks per node, total

65,536 ranks

 Both OpenMP codes:

4 MPI ranks per node and 64

threads per rank, total 2,048 ranks

 All times are exclusive and

measured in seconds

Operation

Time, s

MPI,

original

MPI/OMP

priv. Fock

MPI/OMP

shr. Fock

MPI_Broadact 234 70 62

MPI_AllReduce 264 109 111

MPI_Barrier 25 40 7

OpenMP region N/A 15 50

