An efficient MPI/OpenMP parallelization of
the Hartree-Fock method for the second
generation of Intel® Xeon Phi™ processor

Yuri Alexeevi, Vladimir Mironov?, Kristopher Keipertt3,
Michael D’Mello*, Alexander Moskovsky?, Mark Gordon3

1Argonne National Laboratory, 2Moscow State University,,
3lowa State University, 4Intel Corporation

UNIVERSITY ~ Argonne el |

Introduction

» Quantum Chemistry (QC):

» Studies chemical systems by solving Schrodinger differential
equation

» The solution for Schrodinger equation is approximate

» The input is the coordinates of atoms of the chemical system

» The output is a wavefunction, which describes all chemical and
physical properties of the chemical system

Introduction

» QC has a large variety of methods

» Computational aspects:
» Many computational bottlenecks
» Some methods do not use BLAS
» Variety of data structures
» Not all of methods can be easily and efficiently parallelized
» Dependency between QC methods
» Lack of optimized QC libraries
» High CPU and memory demands
» Computational complexity of ab initio methods is O(N#) and higher

» Double precision is required for chemical accuracy

GAMESS

» Advantages:
» One of the most popular QC programs (>10K user base)
» Many QC methods are implemented in GAMESS
» Free open-source code (custom license)

» Challenges:

» Legacy code developed decades ago written in Fortran 77

» Poor cache utilization

» Hard to thread because of shared data structures (i.e. COMMON blocks)
» Our approach:

» Rewrite and optimize code using modern languages

» OpenMP parallelization and vectorization

» Develop new algorithms
» Goal:

» Optimization of GAMESS for massively parallel architectures

Benefits of using Intel Xeon Phi architecture

» Relatively straight forward porting and optimization of old
Fortran code

» Xeon Phis are especially good for high level parallelism
using large kernels

» Simultaneous performance improvement on both Xeon
and Xeon Phi platforms

Theta supercomputer

System:

» Cray XC40 system installed in ALCF
» 3,624 compute nodes/ 231,936 cores
» 9.65 PetaFlops peak performance
Processor:

» Intel Xeon Phi, 2nd Generation 7230

» 64 Cores
» 1.3 GHz base
Memory:

» 16 GB MCDRAM per node

» 192 GB DDR4-2400 per node

» 754 TB of total system memory

Network:

» Cray Aries interconnect

» Dragonfly network topology

Filesystems:

» Project directories: 10 PB Lustre file system
» Home directories: GPFS

Chip

= 683 mm?2

= 14 nm process

= 8 Billion transistors

Up to 72 Cores
= 36 tiles

= 2 cores per tile
»3 TF per node

2D Mesh Interconnect
= Tiles connected by 2D mesh

36 Tiles
connected by

DOR MC
2D Mesh

Interconnect

On Package Memory
»16 GB MCDRAM

= 8 Stacks

= 485 GB/s bandwidth

6 DDR4 memory channels

= 2 controllers

= up to 384 GB external DDR4
= 90 GB/s bandwidth

On Socket Networking
= Omni-Path NIC on package
= Connected by PCle

Hartree-Fock (HF) method

» One of the first ab initio methods
» Basis for many other QC methods
» Self-consistent solution of the Hartree-Fock equations in matrix form:

FC = €eSC
F — Fock matrix,
C — wavefunction expansion in the selected basis set,
S — matrix of the basis function overlap,
e — vector of orbital energies

Computational complexity is O(N*)
HF requires calculation of N* two-electron repulsion integrals (ERISs)
Screening techniques decrease time complexity down to O(N?2>) — O(N?3)

Memory requirements are from O(N?) for “direct” HF to O(N*) for disk-based
methods

v Vv Vv WV

MPI parallelization algorithm

» Four nested loops over shells

) 1: fori=1, NShells do
» “Triangular” loop structure 2. forj=1,ido
» Schwartz Screening to Sklp small ERI 3 call ddi_dlbnext(ij) > MPIDLB: check I and J indices
values (default: less than 10-10) - for k =1, do _ .
5 k==i7? lmax —k: lmax —J
» Original MPI-only implementation: 6 for [=1, lyax do

» MPI dynamic job load balance over top > Schwartz screening;

two shell Ioops 7 fcreened «— schwartz(i, j, k,[)
)) 8: if not screened then
» Fock matrix reduction across all MPI 9 call eri(i, j,k,1, X, ;x) = Calculate (i, jlk,)
ranks at the end of HF iteration > Update process-local 2e-Fock matrix:
» All data structures (i.e. Fock and density 10: Fockij k1,ik,jt.i1,jk +=
matrices) are replicated die Xijkr * Drijj ik jk.il
. . 11: enda 1
» Drawbacks of GAMESS implementation: - end for
» High memory footprint 13 end for
. 14: end for
» Poor scalability of HF on a large number = end for
gf :lel ranks because of 2-index load > 2e-Fock matrix reduction over MPI ranks:
alancer 16: call ddi_gsumf(Fock)

Shared Fock matrix algorithm

» Each (i, j|k, 1) combination of indices requires
up to six updates:
Ey < (i, jlk D) - D;j Thread safe update
Fij < (i,jlk, 1) - Dy
Fix < (L,jlk, D) - Dy
Fy < (i, jlk, D) - Djy
Fy « (i,jlk,1) - D;, Unsafe update of

.. F;, elements
Fiy < (i,jlk, 1) - Dy]
» Fij, Fy, F;; updates are accumulated in F; vector
» Fj), F, updates are accumulated in F; vector

Unsafe update of
F;, elements

» F; and F; vectors are summed and update F
matrix when the corresponding index changes

6:
7:
8:
9:
10:
11:

27:
28:
29:
30:
31:
32:
33:
34:
35:

36:

loop
'$omp master

call ddi_dlbnext(ij) > MPI DLB: get new combined IJ index
'$omp end master
'$omp barrier
i,j—ij > Deduce I and] indices
klmax < i,] » Deduce KL-loop limit
screened «— schwartz(i, j, i, j) > [and J prescreening
if not screened then

if i # i,;4 then v If i was changed flush Fy

Fock(:, i)+=2 Fi(:, l:nthreads)
!$omp barrier
end if
1$omp do schedule(dynamic,1)
for kl = 1, kl ;45 do
k.l — ki » Deduce K and L indices
screened « schwartz(i, j, k, I) » Schwartz screening
if not screened then
call eri(i, j, k, [, X;jx7) = Calculate (i, jlk,)
> Update private partial Fock matrices:
Fi(:.ithread); i 1+=Xijk1 - Di,j1,jk
Fy(:, ithread)y j+=X;jr; - Dip ik
» Update shared Fock matrix:
FOCk(k, I)+= ijkl " D(I,})
end if
end for
1$omp end do
Fock(:, j)+=% Fy(:, Linthreads) > Flush Fy
!$omp barrier
lold < 1
end if
end loop
> Flush remainder F; contribution to Fock:
Fock(:, i)+=Y Fi(:, 1l:nthreads)

Shared Fock matrix algorithm

» Each (i, j|k, 1) combination of indices requires
up to six updates:

Ey < (i, jlk D) - D;j Thread safe update
Fij < (i,jlk, 1) - Dy
Fy < (i,jlk, 1) - Dy
Fy < (i, jlk, D) - Djy
Fiu = (il D Unsele i o
Fiy < (i,jlk, 1) - Dy "

» Fij, Fy, F;; updates are accumulated in F; vector

Unsafe update of
F;, elements

» Fj), F, updates are accumulated in F; vector

» F; and F; vectors are summed and update F
matrix when the corresponding index changes

bf 1
bf 2

bf N

bf 1
bf 2

Use of | and J vectors:

I and J vectors update

thr 1thr 2 thr M
| and J vectors summation

Memory requirements

=0=MP| =O=Shared Fock =O-=Private Fock

8192 -
® 2048 -
3
S 512 1 Memory on Theta nodes
o 128 -
>
o i
= 32
(]
S 8 -
©
2 2 -
=}
9 0.5 -
o
0.125 -
0.03125 O
32 64 128 256 512 1024 2048

Number of carbon atoms

Setup: MPI-only HF algorithm — 256 MPI ranks/processor; Private and Shared Fock algorithms — 1 MPI ranks/processor, 256 threads/MPI rank

MPI1/OpenMP scaling on smgle Xeon Phl node

» Chemical system: 1.0 nm graphene § -
bilayer (C,,,,1800 basis functions) " ° - gpenm shared F
_ _ o ® - OpenMP private
» Single Intel Xeon Phi processor S | = - Original MPI code | |
» MPI/OpenMP versions of HF method °
run faster than the original MPI-only 8 8 |
code by ~2.5 times ¢ =
» MPI-only code can run maximum on I g |
128 hardware threads because of large — ©®
memory requirements per MPI rank o
» MPI/OpenMP hybrid versions of HF o
method can utilize all 256 hardware o
threads S ‘ .

Scaling on 512 Xeon Phi processors

» Chemical system: 2.0 nm graphene % T i

bilayer (C;54, 5340 basis functions) ® - OpenMP shared F
® - OpenMP private F

B ® - Original MPI code T
- Ideal OpenMP shared F

» 512 KNL processors on Theta
supercomputer installed in ALCF

500 1,000

» Quadrant-cache KNL modes
» OpenMP shared Fock algorithm scales

Log time, sec
100 200

close to ideal -
» OpenMP shared Fock algorithm runs g |
~6 times faster than MPI-only code
» MPI-only original GAMESS algorithm S r
does not scale beyond 256 processors o |

Scaling on 3,000 Xeon Phi processors

» Chemical system: 5.0 nm graphene S I ga474 | -
bilayer (2,016 atoms; 30,240 basis " ® - OpenMP shared F
functions) S | \2 363 - ldeal scaling curve |

» Scaling is demonstrated for h
MPI/OpenMP shared Fock code 8 _

» Memory requirements for MPI-only g S
code vastly larger compared to > 9
MP1/OpenMP shared Fock code S

» Code scales on 3,000 Theta KNL S
processors g o L~ i

» Quadrant-cache KNL modes a | 190)

» 4 MPI ranks per node, 64 threads per e | ' ‘

128 512 1,024 2,048 3,000

rank
a Number of Intel Xeon Phi processors

Conclusions

» Developed new OpenMP/HF algorithms

» Sped up code up to 6 times

» Memory footprint is reduced by up to ~200 times

» Scaled code on 3,000 KNL processors (192,000 cores)

» OpenMP/HF algorithms are implemented in released version of GAMESS:

Hybrid MP1/OpenMP energy code for RHF, UHF, ROHF, and Coulomb part of
DFT exchange-correlation energy

Hybrid MP1/OpenMP gradient code for RHF, UHF, ROHF, and Coulomb part of
DFT exchange-correlation energy

» Code is available on GAMESS website:
http://www.msqg.ameslab.qgov/gamess/download.html

http://www.msg.ameslab.gov/gamess/download.html

Acknowledgments

» This research used resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract
DE-AC02-06CH11357

» We gratefully acknowledge the computing resources provided and operated
by the Joint Laboratory for System Evaluation (JLSE) at Argonne National
Laboratory

» Vladimir Mironov thanks Intel® Parallel Compute Center program for funding

» The authors would like to thank the RSC Technologies staff for discussion
and help related to the paper and for providing Intel Xeon Phi development
platform

» The authors thank Sameer Shende for help with TAU profiling

TAU Profiles

Profile collection details:

» Theta 512 KNL processors

» All measurements were performed Operation MPI MP/OMP MPI/OMP
on MPI rank 0/OpenMP thread 0 original priv. Fock shr. Fock
» Original MPI code: MPI_Broadact 234 70 62
128 MPI ranks per node, total
' MPI_AllIReduce 264 109 111
65,536 ranks -
MPI1_Barrier 25 40 7

» Both OpenMP codes:
4 MPI ranks per node and 64 OpenMP region N/A 15 50
threads per rank, total 2,048 ranks

» All times are exclusive and
measured in seconds

