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What is AWP-ODC-OS?

AWP-ODC-OS (Anelastic Wave 

Propagation, Olsen, Day, Cui):

Simulates seismic wave 

propagation after a fault 

rupture

Used extensively by the 

Southern California 

Earthquake Center community 

(SCEC)

License: BSD 2-Clause
Combined Hazard map of CyberShake Study 15.4 (LA, 

CVM-S4.26) and CyberShake Study 17.4 (Central 

California, CCA-06). AWP-ODC simulations are used to 

generate hazard maps. Colors show 2 seconds period 

spectral acceleration (SA) for 2% exceedance probability 

in 50 years.

AWP-ODC-OS

https://scec.usc.edu/scecpedia/Study_17.3_Data_Products
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What is EDGE?

Extreme-scale Discontinuous 
Galerkin Environment (EDGE): 
Seismic wave propagation 
through DG-FEM

Focus: Problem settings with high 
geometric complexity, e.g., 
mountain topography

“License”: BSD 3-Clause 
(software), CC0 for supporting 
files (e.g., user guide)

Example of hypothetical seismic wave propagation with mountain topography using 

EDGE. Shown is the surface of the computational domain covering the San Jacinto 

fault zone between Anza and Borrego Springs in California. Colors denote the 

amplitude of the particle velocity, where warmer colors correspond to higher 

amplitudes.

EDGE

http://dial3343.org

http://dial3343.org
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Two Representative Codes

Finite difference scheme: 4th order 

in space, 2nd order in time

Staggered-grid, velocity/stress 

formulation of elastodynamic

eqns with frequency dependent 

attenuation

Memory bandwidth bound

AWP-ODC-OS EDGE

Discontinuous Galerkin Finite 

Element Method (DG-FEM)

Unstructured tetrahedral meshes

Small matrix kernels in inner loops

Compute bound for higher orders



6

AWP-ODC-OS

Requires only 5 cache loads

Boosting Single-Node Performance: Vector Folding

• Vector folding data layout
• Stores elements in small SIMD-sized multi-

dimensional blocks
• Reduces memory bandwidth demands by 

increasing reuse

• YASK (Yet Another Stencil Kernel)
• Open-source (MIT License) framework from Intel
• Inputs scalar stencil code
• Creates optimized kernels using vector folding 

and other optimizations

Traditional 

vectorization

Two-

dimensional 

Vector folding

https://github.com/01org/yask

Requires 9 cache loads per SIMD result

https://github.com/01org/yask
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Architecture Comparison

Xeon Phi KNL 7290:

2x speedup over 

NVIDIA K20X; 97% of 

NVIDIA Tesla P100

performance

Memory bandwidth 

accurately predicts 

performance of 

architectures (as 

measured by STREAM 

and HPCG-SpMv)

AWP-ODC-OS

Single node performance comparison of AWP-ODC-OS on a variety of 

architectures. Also displayed is the bandwidth of each architecture, as 

measured by a STREAM and HPCG-SpMv [ISC_17_2]. 
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Outperforming 20K GPUs
AWP-ODC-OS

Weak scaling studies on NERSC 

Cori Phase II and TACC 

Stampede Extension

Parallel efficiency of over 91% 

from 1 to 9000 nodes (9000 

nodes = 612,000 cores)

Problem size of 512x512x512 

per node (14 GB per node)

Performance on 9000 nodes of 

Cori equivalent  to 

performance of over 20,000 

K20X GPUs at 100% scaling

AWP-ODC-OS weak scaling on Cori Phase II and TACC Stampede. We 

attain 91% scaling from 1 to 9000 nodes. The problem size required 

14GB on each node [ISC_17_2].
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Fused Simulations
EDGE

Illustration of fused simulations in EDGE for the 

advection equation using line elements. Top: Single 

forward simulation, bottom: 4 fused simulations.

Illustration of the memory layout for fused simulations in EDGE. Shown 

is a third order configuration for line elements and the advection 

equation. Left: Single forward simulation, right: 4 fused simulations

Exploits inter-simulation parallelism:

 Full vector operations, even for sparse matrix 

operators

 Automatic memory alignment 

 Read-only data shared among all runs

 Lower sensitivity to latency (memory & 

network)
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Fused Simulations:

Performance
Orders: 2-6 (non-fused), 2-4 (fused)

Unstructured tetrahedral mesh: 350,264 

elements

Single node of Cori-II (68 core Intel Xeon 

Phi x200, code-named Knights Landing)

EDGE vs. SeisSol (GTS, git-tag 201511)

Speedup: 2-5x

LOH.1 Benchmark: Example mesh 

and material regions [ISC16_1]

Speedup of EDGE over SeisSol (GTS, git-tag 201511). Convergence rates O2 − O6: single non-fused 

forward simulations (O2C1-O6C1). Additionally, per-simulation speedups for orders O2−O4 when using 

EDGE’s full capabilities by fusing eight simulations (O2C8-O4C8).  [ISC17_1]

EDGE
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Reaching 10+ PFLOPS

Regular cubic mesh, 5 Tets

per Cube, 4th order (O4) 

and 6th order (O6)

Imitates convergence 

benchmark

276K elements per node

1-9000 nodes of Cori-II (9000 

nodes = 612,000 cores)

O6C1 @ 9K nodes: 10.4 

PFLOPS (38% of peak)

O4C8: @ 9K nodes: 5.0 

PFLOPS (18% of peak)

O4C8 vs. O4C1 @ 9K nodes:

2.0x speedup Weak scaling study on Cori-II. Shown are hardware and non-zero peak efficiencies in flat 

mode. O denotes the order and C the number of fused simulations [ISC17_1].

EDGE
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EDGE

Unstructured tetrahedral 

mesh: 172,386,915 

elements

32-3200 nodes of Theta 

(64 core Intel Xeon Phi 

x200,

code-named Knights 

Landing)

3200 nodes = 204,800 

cores

O6C1 @ 3.2K nodes: 3.4 

PFLOPS (40% of peak)

O4C8 vs. O4C1 @ 3.2K 

nodes:

2.0x speedup Strong scaling study on Theta. Shown are hardware and non-zero peak efficiencies 

in flat mode. O denotes the order and C the number of fused simulations [ISC17_1].

100x

50x

Strong at the Limit: 50x and 100x
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EDGE

Outlook: AI Revolution

• EDGE is a prime candidate for merging traditional HPC 
and AI

• Work in progress: LIBXSMM for AVX512_4FMAPS 
(Knights Mill)

• Future work: AVX512_4VNNIW for seismic simulations 
(Knights Mill)

• Future work: Fused simulations to address high-
dimensional parameter spaces (“crunching data”):

• EDGElearn: (Deep) Learning from seismic simulations

• Future work: LIBXSMM in TensorFlow
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