
Thomas Jefferson National Accelerator Facility

A QCD Performance Portability Study
using Kokkos

Balint Joo - Jefferson Lab
T. Kurth, J. C. Deslippe - NERSC

D. Sunderland, D. Ibanez - Sandia National Laboratory
K. Clark - NVIDIA

IXPUG BOF, SC’17, Denver, Nov 14, 2017

Thomas Jefferson National Accelerator Facility

Perf. Portability Study with Kokkos
• With hardware diversity and looking forward to new

systems, performance portability is crucial.

• Kokkos is a C++ library providing parallel programming
constructs, developed and maintained at Sandia
National Lab. (see: github.com:kokkos/kokkos)
- Node model: multicore CPUs, accelerator devices, several

memory spaces

- Patterns: parallel_for, reduction, scan, DAG/futures

- Back Ends: OpenMP, CUDA, OpenMP-target, pthreads, …

• As Part of our ECP & NESAP work we investigated
porting a Key QCD Kernel (Wilson Dslash) to Kokkos
- work done mostly during 4 week visit to NERSC

- and at a GPU Hackathon organized by OLCF & NASA

- in collaboration with NERSC, NVIDIA and the Kokkos team

PETTT Program Course; August 23-24, 2016 9/139

Operating assumptions (1)

Target machine:

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

int N=… // Some large number
View<double[N]> x(“x”);
View<double[N]> y(“y”);
double a = 0.5;

parallel_for(N,
 KOKKOS_LAMBDA(const size_t i) {
 y(i) += a*x(i);
 }
);

A schematic of a typical compute node modeled by
Kokkos: Image from Kokkos Tutorial Slide Deck:

KokkosTutorialARL2016.pdf

A basic example of a Kokkos Code using Views,
parallel_for and C++ 11 lambdas

Thomas Jefferson National Accelerator Facility

The Wilson Dslash Operator
• 4D Sparse Matrix-Vector Operator: χ = D ψ (SRHS)

• For each neighboring site
- project 4x3 spinor on the site to 2x3-spinor

- multiply spinor components by a 3x3 matrix (2 multiplies)

- reconstruct 4x3-spinor result and accumulate

• Both spinors and 3x3 matrix use complex numbers

• 3x3 matrices and vectors: tricky to vectorize
- Vectorize over lattice sites: BFM, QPhiX, BNL-code…

- Or over RHS vectors for: χi = D ψi i=1,2,…. (MRHS)

• MRHS allows reuse of gauge fields
- useful even if one vectorizes over the sites (BNL, QUDA)

D

x,y

y

=
X

µ

(1� �

µ

)U
µ

(x)
x+µ̂

+(1 + �

µ

)U †
µ

(x� µ̂)
x�µ̂

Uµ(x)

x+µ̂

x

µ

⌫

Thomas Jefferson National Accelerator Facility

Initial Kokkos Results (SRHS)
• KNL
- Performance was very low

- Even lower than previous legacy codes

- Reason: no (auto) vectorization

- 3x3 matrices, 3 vectors

• GPU
- Initially large amount of register spill to local

memory

- Needed to adjust CUDA launch bounds for
kernels (Kokkos::LaunchBounds policy) -
Kokkos team has since fixed this default

- After this performance was pretty good

563	

782	

132	

79	

441	

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	

Kokkos	Naïve	

QUDA	

cpp_wilson_dslash	(SSE)	

Kokkos	Naïve	

QPhiX	(SOA=8)	

P1
00
	

KN
L	

GFLOPS	

Single RHS Dslash Performances:
Vol=32x32x32x32 sites

Thomas Jefferson National Accelerator Facility

Site-wise vectorization schemes

Vector Unit of Length N
log2N dimensional

virtual node (VN) grid

Lay-out lattice over
virtual node grid

Ascribe corresponding sites
from virt. node grid into

vector lanes

Nearest neighbor from other VN :
data from other lane => lane permutations

Virtual Node Vectorization
(P. Boyle, e.g. in Grid, BFM)

e.g. arXiv:1512.03487[hep-lat]

X-Y Tiling, e.g. QPhiX
(idea by D. Kalamkar)

Pad_xy

Assemble full Vector from ngy x soa pieces:
 - e.g. ngy=4, soa=4, ngy=2 soa=8, or general gather
 - unaligned loads for some neighbors in x-y plane
 - user now has to choose soa to suit problem

Lxh

Ly

By

 ngy

soa

X

Y

e.g. B. Joo, et. al. ISC'13

https://link.springer.com/chapter/10.1007/978-3-642-38750-0_4

Thomas Jefferson National Accelerator Facility

Vectorization And GPUs
• What does it mean to `vectorize’ for GPUs ?

• Approach 1: Use warp threads as vector lanes
- Kokkos implements with “ThreadVectorRange”

• x-dimension of thread block for CUDA

• loop + maybe #pragma ivdep fo OpenMP

• Approach 2: GPU Vector Length is 1
- Vector code reduces to unvectorized on GPU

- This is fine, since ‘unvectorized’ was already good.

• Implemented Approach 1 for MRHS case

• Implemented Approach 2 for SRHS case
- used ‘Grid’-like Virtual Node approach

ST = SIMDComplex<T,4>

TST= GPUSIMDComplex<T,4>

tid.x=0 tid.x=1 tid.x=2 tid.x=3

ST = SIMDComplex<T,4>

Schematic of Approach 1 on GPU: TST is a type for thread-
local objects.

Thomas Jefferson National Accelerator Facility

Other Optimizations
• Vectorize VN permutes using AVX512 intrinsics
- using _m512_permutexvar_ps()

• spin <-> color loop interchange (help L1 locality)

• 4D Blocking using Kokkos::MDRange exec.
policy
- tune block size for performance

• Gauge Field Access:
- keep copies of back pointing links => unit stride access

for gauge fields

- KNL: pre-permute links from back neighbor: no gauge
permute in Dslash

• GPU: derived complex number class from float2

Bx=4

By=4

tid=0 tid=1

tid=2 tid=3

block=0 block=1

block=2 block=3

MDRangePolicy<2,IterateLeft,IterateLeft>
 policy({0,0},{8,8},{4,4});

tid=0
tid=4
tid=8
tid=12

(0,0)

(7,7)

OpenMP CUDA

Thomas Jefferson National Accelerator Facility

Block Tuning for MDRange

• Block Tuning gave broad performance distributions, with few (<10) tunings giving the
highest performance. Autotuning is a must & unfortunately the space is big (4D).

Cori KNL
Node

SummitDev
P100 GPU

Thomas Jefferson National Accelerator Facility

Current Performance Summary
• SRHS Case:

- Kokkos Vectorized Dslash with AVX512 and tuned
blocking matches QPhiX on Cori KNL node (68
cores, 272 threads)

- Unvectorized & No AVX cases are slow

- Kokkos Naive CUDA version is 72% of QUDA on P100
(SummitDev)

- Vectorized (but V=1) QUDA version benefits from
block tuning, memory & locality optimizations and
md_parallel_for: 79% of QUDA on P100
(SummitDev)

• MRHS Case:
- Kokkos With AVX512 exceeds corresp. QPhiX

SRHS performance on Cori KNL node for 8 RHS

- Kokkos Without AVX512 is very slow

- Kokkos CUDA version is 86% of QUDA for 16 RHS
on SummitDev (P100)

563	

614	

782	

132	

79	

27	

442	

441	

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	

Kokkos	Naïve	

Kokkos	Vector	(V=1)	

QUDA	

cpp_wilson_dslash	(SSE)	

Kokkos	Naïve		

Kokkos	Vector	(V=8,	No		AVX512)	

Kokkos	Vector	(V=8,	with	AVX512)	

QPhiX	(SOA=8)	

P1
00
	

KN
L	

SR
HS

	

GFLOPS	

1,213	

1,409	

38	

468	

428	

0	 200	 400	 600	 800	 1000	 1200	 1400	 1600	

Kokkos	(V=16)	

QUDA	(V=16)	

Kokkos	No	AVX512	(V=8)	

Kokkos	With	AVX512	(V=8)	

QPhiX	(SOA=8,SRHS)	

P1
00
	

KN
L	

M
RH

S	
GFLOPS	

Vol=32x32x32x32 sites

Vol=16x16x16x32 sites

Thomas Jefferson National Accelerator Facility

Absolute Performance is good too

• Little Below Roofline.
Reported L1 AI=1.97

• Vtune is concerned with
spin wait in barrier

• Good CPU usage and
mem BW Usage

Vector SRHS
Dslash on

Cori KNL node

Thomas Jefferson National Accelerator Facility

How much Non-portable stuff is there?

1%	1%	 4%	
6%	

1%	

5%	

82%	

Config	
GPU	Complex	
GPU	SIMD	(thread_idx)	
GPU	SIMD	(length	1)	
KNL	Permutes	
KNL	SIMD	(float-8)	
Remainder	

• Total code is 4545 lines of code
- excluding unit tests which bring it to 7100

• KNL Specific (AVX512) : 274 lines
- permutes for Virtual Node 34 lines

- complex ops for float-8 SIMD: 240 lines

• GPU Specific:
- Derive complex from float2: 60 lines

- Warp SIMD type & ops (threadIdx.x): 207 lines

- Length=1 SIMD ops: 275 lines (repeat of scalar)

• Select GPU/CPU Layout, types etc: 60 lines
Line counts are ‘approximate’

Carried out by outlining machine specific
parts and using SLOCCount

Thomas Jefferson National Accelerator Facility

Summary and Conclusions
• Kokkos freed us from the need to deal directly with OpenMP pragmas, CUDA etc

• It did not save us from having to optimize.

• On KNL we had to vectorize our complex arithmetic and permutations with
intrinsics

- ~274 LOC out of ~4500 and we would need to repeat for double prec, other AVX flavors, etc.

- Kokkos implementing an optimized complex SIMD type could move this burden to Kokkos

• We needed a performance portable algorithm
- a vector friendly algorithm, i.e. MRHS or Virtual Node vectorization over sites

- on GPUs use Warp threads as Vector Lanes or have GPU Vector length = 1.

• Excellent performance on both KNL and GPU after optimzations and block tuning.

• Future work: Parallelize over nodes with MPI, interface with Trilinos, …

Thomas Jefferson National Accelerator Facility

Acknowledgments
• Jefferson Lab is operated by Jefferson Science Associates LLC under U.S. DOE Contract No. DE-

AC05-06OR23177

• B. Joo gratefully acknowledges funding from the U.S. Department of Energy, Office of Science, Offices of
Nuclear Physics, High Energy Physics and Advanced Scientific Computing Research under the SciDAC
programs: SciDAC, SciDAC 2, SciDAC 3 and SciDAC 4.

• B. Joo gratefully acknowledges funding from the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research under the USQCD Exascale Computing Project (Lattice QCD)

• B. Joo gratefuly acknowledges travel funding from NERSC for a summer Affiliate Appointment for work on
Kokkos.

• The 2017 ORNL Hackathon at NASA was a collaboration between and used resources of both the
National Aeronautics and Space Administration and the Oak Ridge Leadership Computing Facility at Oak
Ridge National Laboratory. Oak Ridge Nation Laboratory is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

• We gratefully acknowledge use of computer time at JeffersonLab (SciPhi XVI cluster), K80 Development
node, NERSC Cori and OLCF SummitDev.

