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Perf. Portability Study with Kokkos
• With hardware diversity and looking forward to new 

systems, performance portability is crucial.

• Kokkos is a C++ library providing parallel programming 
constructs, developed and maintained at Sandia 
National Lab. (see: github.com:kokkos/kokkos)
- Node model: multicore CPUs, accelerator devices, several 

memory spaces

- Patterns: parallel_for, reduction, scan, DAG/futures

- Back Ends: OpenMP, CUDA, OpenMP-target, pthreads, …

• As Part of our ECP & NESAP work we investigated 
porting a Key QCD Kernel (Wilson Dslash) to Kokkos
- work done mostly during 4 week visit to NERSC

- and at a GPU Hackathon organized by OLCF & NASA

- in collaboration with NERSC, NVIDIA and the Kokkos team
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int N=…  // Some large number
View<double[N]> x(“x”);
View<double[N]> y(“y”);
double  a = 0.5;

parallel_for(N,
     KOKKOS_LAMBDA(const size_t i) {
                y(i) += a*x(i);
            }
); 

A schematic of a typical compute node modeled by 
Kokkos: Image from Kokkos Tutorial Slide Deck: 

KokkosTutorialARL2016.pdf 

A basic example of a Kokkos Code using Views, 
parallel_for and C++ 11 lambdas
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The Wilson Dslash Operator
• 4D Sparse Matrix-Vector Operator: χ = D ψ (SRHS)

• For each neighboring site
- project 4x3 spinor on the site to  2x3-spinor

- multiply spinor components by a 3x3 matrix (2 multiplies)

- reconstruct 4x3-spinor result and accumulate

• Both spinors and 3x3 matrix use complex numbers

• 3x3 matrices and vectors: tricky to vectorize
- Vectorize over lattice sites: BFM, QPhiX, BNL-code…

- Or over RHS vectors for: χi = D ψi  i=1,2,….  (MRHS)

• MRHS allows reuse of gauge fields
- useful even if one vectorizes over the sites (BNL, QUDA)
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Initial Kokkos Results (SRHS)
• KNL
- Performance was very low

- Even lower than previous legacy codes

- Reason: no (auto) vectorization

- 3x3 matrices, 3 vectors

• GPU
- Initially large amount of register spill to local 

memory

- Needed to adjust CUDA launch bounds for 
kernels ( Kokkos::LaunchBounds policy ) - 
Kokkos team has since fixed this default

- After this performance was pretty good
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Site-wise vectorization schemes

Vector Unit of Length N
log2N dimensional

virtual node (VN) grid

Lay-out lattice over 
virtual node grid

Ascribe corresponding sites
from virt. node grid into

vector lanes

Nearest neighbor from other VN : 
data from other lane => lane permutations

Virtual Node Vectorization  
(P. Boyle, e.g. in Grid, BFM)

e.g. arXiv:1512.03487[hep-lat]

X-Y Tiling, e.g. QPhiX 
(idea by D. Kalamkar)

Pad_xy

Assemble full Vector from ngy x soa pieces: 
  - e.g. ngy=4, soa=4, ngy=2 soa=8, or general gather 
  - unaligned loads for some neighbors in x-y plane 
  - user now has to choose soa to suit problem
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e.g. B. Joo, et. al. ISC'13

https://link.springer.com/chapter/10.1007/978-3-642-38750-0_4
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Vectorization And GPUs
• What does it mean to `vectorize’ for GPUs ?

• Approach 1: Use warp threads as vector lanes 
- Kokkos implements with “ThreadVectorRange”

• x-dimension of thread block for CUDA

• loop + maybe #pragma ivdep fo OpenMP

• Approach 2: GPU Vector Length is 1 
- Vector code reduces to unvectorized on GPU

- This is fine, since ‘unvectorized’ was already good.

• Implemented Approach 1 for MRHS case

• Implemented Approach 2 for SRHS case 
- used ‘Grid’-like Virtual Node approach 

ST = SIMDComplex<T,4>

TST= GPUSIMDComplex<T,4>

tid.x=0 tid.x=1 tid.x=2 tid.x=3

ST = SIMDComplex<T,4>

Schematic of Approach 1 on GPU: TST is a type for thread-
local objects. 
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Other Optimizations
• Vectorize VN permutes using AVX512 intrinsics
- using _m512_permutexvar_ps()

• spin <-> color loop interchange (help L1 locality)

• 4D Blocking using Kokkos::MDRange exec. 
policy
- tune block size for performance

• Gauge Field Access:
- keep copies of back pointing links => unit stride access 

for gauge fields

- KNL: pre-permute links from back neighbor: no gauge 
permute in Dslash

• GPU: derived complex number class from float2 

Bx=4

By=4

tid=0 tid=1

tid=2 tid=3

block=0 block=1

block=2 block=3

MDRangePolicy<2,IterateLeft,IterateLeft> 
                          policy({0,0},{8,8},{4,4});

tid=0
tid=4
tid=8
tid=12
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Block Tuning for MDRange

• Block Tuning gave broad performance distributions, with few (<10) tunings giving the 
highest performance. Autotuning is a must & unfortunately the space is big (4D).

Cori KNL 
Node

SummitDev 
P100 GPU
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Current Performance Summary
• SRHS Case:

- Kokkos Vectorized Dslash with AVX512 and tuned 
blocking matches QPhiX on Cori KNL node (68 
cores, 272 threads)

- Unvectorized & No AVX cases are slow

- Kokkos Naive CUDA version is 72% of QUDA on P100 
(SummitDev)

- Vectorized (but V=1) QUDA version benefits from 
block tuning, memory & locality optimizations and 
md_parallel_for: 79% of QUDA on P100 
(SummitDev)

• MRHS Case: 
- Kokkos With AVX512 exceeds corresp. QPhiX 

SRHS performance on Cori KNL node for 8 RHS

- Kokkos Without AVX512 is very slow

- Kokkos CUDA version is 86% of QUDA for 16 RHS 
on SummitDev (P100)
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Absolute Performance is good too

• Little Below Roofline. 
Reported L1 AI=1.97

• Vtune is concerned with 
spin wait in barrier 

• Good CPU usage and 
mem BW Usage

Vector SRHS 
Dslash on 

Cori KNL node
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How much Non-portable stuff is there?

1%	1%	 4%	
6%	

1%	

5%	

82%	

Config	
GPU	Complex	
GPU	SIMD	(thread_idx)	
GPU	SIMD	(length	1)	
KNL	Permutes	
KNL	SIMD	(float-8)	
Remainder	

• Total code is 4545 lines of code 
- excluding unit tests which bring it to 7100

• KNL Specific (AVX512) : 274 lines
- permutes for Virtual Node 34 lines

- complex ops for float-8 SIMD:  240 lines

• GPU Specific: 
- Derive complex from float2: 60 lines

- Warp SIMD type & ops (threadIdx.x):  207 lines

- Length=1 SIMD ops: 275 lines (repeat of scalar)

• Select GPU/CPU Layout, types etc: 60 lines
Line counts are ‘approximate’ 

Carried out by outlining machine specific 
parts and using SLOCCount
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Summary and Conclusions
• Kokkos freed us from the need to deal directly with OpenMP pragmas, CUDA etc

• It did not save us from having to optimize. 

• On KNL we had to vectorize our complex arithmetic and permutations with 
intrinsics

- ~274 LOC out of ~4500 and we would need to repeat for double prec, other AVX flavors, etc.

- Kokkos implementing an optimized complex SIMD type could move this burden to Kokkos

• We needed a performance portable algorithm
- a vector friendly algorithm, i.e. MRHS or Virtual Node vectorization over sites

- on GPUs use Warp threads as Vector Lanes or have GPU Vector length = 1.

• Excellent performance on both KNL and GPU after optimzations and block tuning.

• Future work: Parallelize over nodes with MPI, interface with Trilinos, … 
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