

CODE THAT PERFORMS INTEL® PARALLEL STUDIO XE 2018

Accelerate HPC, Enterprise & Cloud Applications

What's New in Intel® Parallel Studio XE 2018 THE INTEL® CROUP

Modernize your Code to be Fast, Scalable, Portable, & Parallel

- Speed application performance with Intel[®] AVX-512 for the latest Intel[®] Xeon[®] Scalable and Intel[®] Xeon Phi[™] processors. Accelerate MPI applications with Intel[®] Omni-Path Architecture.
- Accelerate HPC with high-performance Python*.
- Find high impact, but under optimized loops using Intel[®] Advisor's roofline analysis.
- Stay up-to-date with the latest standards and IDEs.
 - Full C++14 and initial C++ 2017 draft
 - Full Fortran 2008 and initial Fortran 2015 draft
 - Python 2.7 and 3.6, initial OpenMP 5.0 draft
 - Microsoft Visual Studio* 2017 integration
- Flexibility for What You Need
 - Quickly spot high payoff opportunities for faster code using a combined performance snapshot for MPI, CPU, FPU, and memory use.
 Adds MPICH and Cray support.
 - Easily access the latest Intel® Performance Libraries and Intel® Python* Distribution via APT GET, YUM and Conda.
 - New, broader redistribution rights for Intel[®] Performance Libraries and Intel[®] Distribution for Python*.

Optimization Notice

What's Inside Intel[®] Parallel Studio XE

Comprehensive Software Development Tool Suite

COMPOSER EDITION	PROFESSIONAL EDITION	CLUSTER EDITION
BUILD Compilers & Libraries	ANALYZE Analysis Tools	SCALE Cluster Tools
C / C++ Compiler Optimizing Compiler Fortran Compiler Optimizing Compiler Intel® Threading Building Blocks	Intel [®] VTune [™] Amplifier Performance Profiler Intel [®] Inspector Memory & Thread Debugger Intel [®] Advisor Vectorization Optimization	Intel® MPI Library Message Passing Interface Library Intel® Trace Analyzer & Collector MPI Tuning & Analysis Intel® Cluster Checker Cluster Diagnostic Expert System
C++ Threading Library	& Thread Prototyping	
High Performance Scripting		
Intel® Architecture Platforms	CORE 13 Inde	(intel) CORE 15 Inside CORE 17 Inside Inside
Operating System: Windows*, Linux*, MacOS ¹ *		

More Power for Your Code - <u>software.intel.com/intel-parallel-studio-xe</u>

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ¹Available only in Intel[®] Parallel Studio XE Composer Edition.

How your Business can Benefit from More Performance

- Use the full power, get more performance from Intel hardware
- Speed applications and workload processing
- Increase efficiency and developer productivity
- Solve business challenges, fuel innovation
- Scale forward, drive compatibility and interoperability

Intel[®] Parallel Studio XE

- Boosts performance on today's and future Intel[®] platforms
- Simplifies creating high performance, scalable, reliable parallel code with less effort

3 Editions are Available – <u>Composer</u>, <u>Professional</u> & <u>Cluster</u> <u>Download a Free Trial</u>

3 Editions to Meet Your Needs

Inte	el® Parallel Studio XE	Composer Edition	Professional Edition	Cluster Edition
		from \$699	from \$1,699	from \$2,949
BUILD	Intel® C++ Compiler Intel® Fortran Compiler Intel® Distribution for Python* Intel® Math Kernel Library – fast math library Intel® Integrated Performance Primitives – image, signal & data processing Intel® Threading Building Blocks – C++ threading library Intel® Data Analytics Acceleration Library – machine learning & analytics	~ ~ ~ ~ ~ ~	↓ ↓ ↓ ↓ ↓	$\begin{array}{c} \checkmark \\ \checkmark $
ANALYZE	Intel® VTune™ Amplifier XE – performance profiler Intel® Advisor – vectorization optimization & thread prototyping Intel® Inspector – memory & thread debugging		イ イ イ	√ √ √
SCALE	Intel® MPI Library – message passing interface library Intel® Trace Analyzer and Collector – MPI tuning & analysis Intel® Cluster Checker – cluster diagnostic expert system			イ イ イ
	Rogue Wave IMSL* Library – Fortran numerical analysis	Bundle or Add-on	Add-on	Add-on

See additional license options including floating & academic at: http://intel.ly/perf-tools

Intel® Software Development Tools Floating License Change – As of Sept. 12, 2017, floating licenses for Intel Software Development Tools 2017 and 2018 versions require the latest version (Intel 2.5/Imgrd 11.14.1.1) of the Intel® Software License Manager for successful installation. To obtain the latest Intel® Software License Manager, visit Intel Registration Center. For more details, see Installation Errors Related to Intel Software License Manager Upgrade.

Optimization Notice

Take Advantage of Intel Priority Support

Paid licenses of Intel[®] Software Development Tools include Priority Support for one year from your date of purchase, with options to extend support at a highly discounted rate.

Benefits

- Direct & private interaction with Intel engineers.
 Submit confidential inquiries & code samples via the Online Service Center.
- Responsive help with your technical questions & other product needs.
- Free access to all new product updates & access to older versions.

Additional Resources

- Learn from other experts via community product forums
- Access to a vast library of self-help documents that build off decades of experience with creating high performance code.

Programs for Free or Discounted Tools¹ Intel[®] Parallel Studio XE

Free Software via Special Programs for those who qualify

- Students, educators, classroom use, open source developers, & academic researchers
- software.intel.com/qualify-for-free-software

Intel[®] Performance Libraries Community Licensing

- Available to all no royalties or restrictions based on company or project size
- software.intel.com/nest

Academic Researchers (qualification required)

HPC Software Optimization Success Stories

SCIENCE & RESEARCH Up to 35X faster application performance

NERSC (National Energy Research Scientific Computing Center) - <u>see case study</u>

FINANCE

Up to 2.7X improved performance** compared to NVIDIA Tesla K80*

Monte Carlo European Options Benchmark*

LIFE SCIENCE

Simulations ran up to 7.6X faster with 9X energy efficiency**

LAMMPS code - Sandia National Laboratories

intel.com/content/www/us/en/high-performance-computing/hpc-xeon-phi-technology-brief.html

VISUALIZATION Up to 5.17X performance improvement** compared to NVIDIA Titan X*

Intel Embree v2.9.0

**Intel® Xeon Phi™ Processor (codenamed Knights Landing) Software Ecosystem Momentum Guide

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations & functions. Any change to any of those factors may cause the results to vary. You should consult other information & performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to https://www.intel.com/performance. Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804.

Optimization Notice

More Resources & Advanced Training

- Overview, features, support
- Dev tools training materials
- Reviews

More Intel[®] Software Development Products

Intel Code Modernization Program

- Overview
- Live training
- Remote Access

FUTURE FORWARD

Get ready with FREE technical webinars Every Wednesday September 13 – November 8, 2017 9:00 am – 10:00 AM PDT

software.seek.intel.com/fall-webinar-series

Tomorrow's HPC innovations will be powered by amazing technologies that enable organizations to accelerate discovery and invention.

The Intel[®] HPC Developer Conference 2017 features industry luminaries sharing best practices and techniques to help realize the potential of these technologies. Attendees will gain hands-on experience with Intel platforms, network with peers and industry experiences, and gain insight on recent technology advances to maximize so thware efficiency that help drive discovery.

Denver, CO – Nov. 11-12

WHY ATTEND THE INTEL" HPC DEVELOPER CONFERENCE?

The Intel[®] HIC: Developer Conference is the premier technical training event to meet and hear from Intel[®] architecture experts and connect with HIC: Industry leaders. Join in to learn what's end to the second technical session, hand-on thurbias, and poster chasts that cover parallel programming, high productivity languages, entitical intelligence, systems, enterprise, visualization development and much more.

intel.com/content/www/us/en/events/hpcdevcon/overview.html

THE INTEL® XEON PHI® USERS

Optimization Notice

INTEL® PARALLEL STUDIO XE Component tools

BUILD

Intel[®] C++ Compiler Intel[®] Fortran Compiler Intel[®] Distribution for Python* Intel[®] Math Kernel Library Intel[®] Integrated Performance Primitives Intel[®] Threading Building Blocks Intel[®] Data Analytics Acceleration Library Included in Composer Edition

ANALYZE

Intel® VTune™ Amplifier XE Intel® Advisor Intel® Inspector

Part of the Professional Edition

SCALE

Intel® MPI Library Intel® Trace Analyzer & Collector Intel® Cluster Checker

Part of the Cluster Edition

Fast, Scalable, Parallel Code with Intel[®] Compilers

Deliver Industry-leading C/C++ & Fortran Code Performance, Unleash the Power of the latest Intel[®] Processors

- Develop optimized and vectorized code for various Intel[®] architectures, including Intel[®] Xeon[®] and Xeon Phi[™] processors
- Leverage latest language and OpenMP* standards, and compatibility with leading compilers & IDEs
- SIMD Data Layout Template (SDLT) library
 - Vectorize your standard C++ array-of-structure code
- Virtual function vectorization
 - Boost performance of your object-oriented C++ code

Learn More: software.intel.com/intel-compilers

Optimization Notice

What's New in Intel[®] Compilers 2018

Updates to All Versions

- Advance Support for Intel[®] Architecture Use Intel compiler to generate optimized code for Intel Atom[®] through Intel[®] Xeon[®] Scalable and Xeon Phi[™] processor families
- Achieve Superior Parallel Performance Vectorize & thread your code (using OpenMP*) to take full advantage of the latest SIMDenabled hardware, including AVX-512 instructions
- Develop Smart Code with Confidence Access extensive compiler diagnostics to study code generation characteristics, use with Intel[®] VTune[™] Amplifier & Intel[®] Advisor for further analysis
- **Faster Compile Time** Memory management improvements reduce application compile time without sacrificing runtime performance
- Lightweight Hardware-based Profile-guided Optimization alternative – Experience many benefits of profile information without the overhead of instrumentation¹

What's New in C++

Initial C++17, OpenMP* 5; full C++ 14 support

Standards-driven parallelization for C++ developers

What's New in Fortran

Full Fortran 2008 supportSubmodules, BLOCK, superior coarray performance

Initial Fortran 2015 support (draft standard)

• Further C interoperability (ISO/IEC TS 29113:2012)

Full OpenMP* 4.5 support; initial OpenMP 5

Thread & vectorize your code using standard APIs

¹Requires Intel[®] VTune[™] Amplifier

Optimization Notice

Intel[®] Compilers: Huge Value-Add for Developers

As a softwa	re developer, I care about	my challenges are	Intel [®] Compilers offer
E	Performance – I develop applications that need to execute FAST	Taking advantage of the latest hardware innovations	Access to full power of the latest x86-compatible processors & instruction sets
	Productivity – I need productivity & ease of use offered by compilers	Finding support for leading languages & programming models	Support for the latest Fortran, C/C++ & OpenMP* standards; compatibility with leading compilers & IDEs
	Scalability – I develop & debug my application locally, & deploy my application globally	Maintaining my code as core counts & vector widths increase at a fast pace	Scalable performance without changing code as newer generation processors are introduced

Optimization Notice

Function splitting

- useful to set the inline depth for too large function
- -[f|Q]fnsplit[=n], where 0 <= n <= 100</p>
- function splitting for functions blocks with execution probability less or equal to n
- it forces the compiler to do function splitting even if there is no dynamic profiling
- also support GCC's –freorder-blocks-and-partition (requires dynamic profiling)

SVML calls dispatching during compile time

- direct call to cpu-specific SVML entry is performed by default now
- removes SVML dynamic dispatching overhead for programs built with -x... options
- no dispatching in runtime improves performance
- -[f|Q]imf-force-dynamic-target[[=]:]funclist] reverts the previous behavior

FP consistency vector vs scalar code

- for scalar math LIBM is used which does not guarantee bitwise-same result of vectorized math lib SVML
- -[f|Q]imf-use-svml changes scalar LIBM calls to "scalar" SVML calls
- compiler vectorizes math functions in fp-model precise

The Intel[®] Xeon[®] Processor Scalable Family is based on the server microarchitecture codenamed Skylake

- Compile with processor-specific option [-/Q]xCORE-AVX512
- By default it will not optimize for more restrained ZMM register usage which works best for certain applications

A new compiler option [-q/Q]opt-zmm-usage=low/high is added to enable a smooth transition from AVX2 to AVX-512. See <u>https://software.intel.com/en-us/articles/tuning-simd-vectorization-when-targeting-intel-xeon-processor-scalable-family</u> for more information.

```
void foo(double *a, double *b, int size) {
    #pragma omp simd
    for(int i=0; i<size; i++) {
        b[i]=exp(a[i]);
    }
}</pre>
```

```
icpc -c -xCORE-AVX512 -qopenmp -qopt-report:5 foo.cpp
remark #15305: vectorization support: vector length 4
...
remark #15321: Compiler has chosen to target XMM/YMM
vector. Try using -qopt-zmm-usage=high to override
...
remark #15478: estimated potential speedup: 5.260
```


The Intel[®] Xeon[®] Processor Scalable Family is based on the server microarchitecture codenamed Skylake

- Compile with processor-specific option [-/Q]xCORE-AVX512
- By default it will not optimize for more restrained ZMM register usage which works best for certain applications

A new compiler option [-q/Q]opt-zmm-usage=low/high is added to enable a smooth transition from AVX2 to AVX-512. See <u>https://software.intel.com/en-us/articles/tuning-simd-vectorization-when-targeting-intel-xeon-processor-scalable-family</u> for more information.

```
void foo(double *a, double *b, int size) {
    #pragma omp simd
    for(int i=0; i<size; i++) {
        b[i]=exp(a[i]);
    }
}</pre>
```

```
icpc -c -xCORE-AVX512 -qopt-zmm-usage=high -qopenmp
-qopt-report:5 foo.cpp
```

```
remark #15305: vectorization support: vector length 8
...
remark #15478: estimated potential speedup: 10.110
```


Faster Python* with Intel® Distribution for Python*

Advance Performance Closer to Native Code

- Accelerated NumPy, SciPy, scikit-learn for scientific computing, machine learning & data analytics
- Drop-in replacement for existing Python no code changes required
- Highly optimized for the latest Intel processors

What's New in the 2018 edition

- Updated to support Python 3.6
- Optimized scikit-learn for machine learning speedups
- Conda build recipes for custom infrastructure

Intel[®] Distribution for Python* Performance Speedups for Select Math Functions on Intel[®] Xeon[™] Processors

Configuration: Hardware: Intel[®] Xeon[®] CPU E5-2699 v4 @ 2.20GHz (2 sockets, 22 cores per socket, 1 thread per core – HT is off), 256GB DDR4 @ 2400MHz. Software: Stock: CentOS Linux* release 7.3.1611 (Core), python 3.6.2, pip 9.0.1, numpy 1.13.1, scipy 0.19.1, scikit-learn 0.19.0. Intel[®] Distribution for Python* 2018 Gold: mkl 2018.0.0 intel_4, daal 2018.0.0.20170814, numpy 1.13.1 py36_intel_15, openmp 2018.0.0 intel_7, scipy 0.19.1 np113py36_intel_11, scikit-learn 0.18.2 np113py36_intel_3

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance. Benchmark Source: Intel Corporation.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Ontimization Notice: Ital's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations, in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please reter to the applicable product User and Reference Guides for more inform regarding the specific institution sets covered by this notice.

Learn More: software.intel.com/distribution-for-python

Optimization Notice

What's Inside Intel[®] Distribution for Python

High Performance Python* for Scientific Computing, Data Analytics, Machine & Deep Learning

FASTER PERFORMANCE	GREATER PRODUCTIVITY	ECOSYSTEM COMPATIBILITY
Performance Libraries, Parallelism, Multithreading, Language Extensions	Prebuilt & Accelerated Packages	Supports Conda & PIP
Accelerated NumPy/SciPy/scikit-learn with Intel® MKL ¹ & Intel® DAAL ² Data analytics, machine learning & deep learning with scikit-learn, pyDAAL, Caffe*, Theano* Scale with Numba* & Cython* Includes optimized mpi4py, works with Dask* & PySpark* Optimized for latest Intel® architecture	Prebuilt & optimized packages for numerical computing, machine/deep learning, HPC, & data analytics Drop in replacement for existing Python - No code changes required Jupyter* notebooks, Matplotlib included Free download & free for all uses including commercial deployment	Compatible & powered by Anaconda*, supports conda & pip Distribution & individual optimized packages also available at conda & Anaconda.org, YUM/APT, Docker image on DockerHub Optimizations upstreamed to main Python trunk Priority Support through Intel® Parallel Studio XE
Intel [®] Architecture Platforms		(intel) CORE 13 Inside Inside Inside Inside Inside Inside
Operating System: Windows*, Linux*, Mac	OS ³ *	

¹Intel® Math Kernel Library ²Intel® Data Analytics Acceleration Library ³Available only in Intel® Parallel Studio XE Composer Edition

Optimization Notice

Performance Speedups for Intel[®] Distribution for Python* for Black Scholes* Formula (Higher is Better)

Configuration: Hardware: Intel® Xeon® CPU E5-2699 v4 @ 2.20GHz (2 sockets, 22 cores per socket, 1 thread per core – HT is off), 256GB DDR4 @ 2400MHz. Software: Stock: CentOS Linux* release 7.3.1611 (Core), python 3.6.2, pip 9.0.1, numpy 1.13.1, scipy 0.19.1, scikit-learn 0.19.0. Intel® Distribution for Python* 2018 Gold: mkl 2018.0.0 intel_4, daal 2018.0.0.20170814, numpy 1.13.1 py36_intel_15, openmp 2018.0.0 intel_7, scipy 0.19.1 np113py36_intel_11, scikit-learn 0.18.2 np113py36_intel_3

Configuration: Hardware: Intel[®] Xeon Phi[™] CPU 7250 @ 1.40GHz [1 socket, 68 cores per socket, 4 threads per core), 192GB DDR4 @ 1200MHz, 16GB MCDRAM @ 7200MHz in cache mode. Software: Stock: CentOS Linux release 7.3.1611 (Core), python 3.6.2, pip 9.0.1, numpy 1.13.1, scipy 0.19.1, scikit-learn 0.19.0. Intel[®] Distribution for Python* 2018 Gold: mkl 2018.0.0 intel_4, daal 2018.0.020170814, numpy 1.13.1 py36_intel_13, openmp 2018.0.0 intel_7, scipy 0.19.1 np113py36_intel_14, scikit-learn 0.18.2 np113py36_intel_3

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance. Benchmark Source: Intel or portations. Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessors. Certain optimizations not specific to Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others 21

Fast, Scalable Code with Intel[®] Math Kernel Library (Intel[®] MKL)

Learn More: software.intel.com/mkl

Highly optimized, threaded, & vectorized math functions that maximize performance on each processor family

- Utilizes industry-standard C and Fortran APIs for compatibility with popular BLAS, LAPACK, and FFTW functions—no code changes required
- Dispatches optimized code for each processor automatically without the need to branch code

What's New in the 2018 edition

- Improved small matrix multiplication performance in GEMM & LAPACK
- Improved ScaLAPACK performance for distributed computation
- 24 new vector math functions
- Simplified license for easier adoption & redistribution
- Additional distributions via YUM, APT-GET, & Conda

Optimization Notice

What's Inside Intel® Math Kernel Library

Accelerate HPC, Enterprise, Cloud & IoT Applications

Linear Algebra BLAS LAPACK ScaLAPACK Sparse BLAS Iterative sparse solvers PARDISO* Cluster Sparse Solver	FFTs Multidimensional FFTW interfaces Cluster FFT 	Neural Networks Convolution Pooling Normalization ReLU Inner Product 	Vector RNGs • Congruential • Wichmann-Hill • Mersenne Twister • Sobol • Neiderreiter • Non-deterministic
Summary Statistics Kurtosis Variation coefficient Order statistics Min/max Variance-covariance 	Vector Math Trigonometric Hyperbolic Exponential Log Power Root 	 & More Splines Interpolation Trust Region Fast Poisson Solver 	
Intel [®] Architecture Platform	S	CORE 13 Inside	intel CORE IS inside CORE IT inside CORE IT inside CORE IS inside CORE IS inside CORE IS inside CORE IS inside CORE IS inside

Operating System: Windows*, Linux*, macOS1*

Optimization Notice

Automatic Performance Scaling from the Core, to Multicore, to Many Core & Beyond Intel[®] Math Kernel Library (Intel[®] MKL)

Extract more performance from available computing resources

- Core: vectorization, prefetching, cache utilization
- Multi-Many core (processor/ socket) level parallelization
- Multi-socket (node) level parallelization
- Clusters scaling

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. lIG

Problem Size (M=N=K)

Problem Size (M=N=K)

N

~

Configuration: Intel® Xeon® Platinum 8180. 2x28 cores. 2.5GHz, 38.5MB L3 cache. 376GB RAM. OS Ubuntu 16.04 LTS: Intel® Math Kernel Library (Intel® MKL) 2018. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Benchmark Source: Intel Corporation. Optimization Notice: Intel's completes may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804.

Speed Imaging, Vision, Signal, Security & Storage Apps with Intel[®] Integrated Performance Primitives

Accelerate Image, Signal, Data Processing & Cryptography computation tasks

- Multi-core, multi-OS and multi-platform ready, computationally intensive and highly optimized functions
- Use high performance, easy-to-use, production-ready APIs to quickly improve application performance
- Reduce cost and time-to-market on software development and maintenance

What's New in 2018 edition

- Optimized functions for LZ4 data compression/decompression, a fast compression algorithm suitable for applications where speed is key - especially in communication channels
- Optimized functions for GraphicsMagick, a popular image processing toolbox, so customers using this function can achieve improved performance
- Added Platform aware APIs, which automatically detects whether image vectors and length are 32-bit or 64-bit and abstracts this away from the users

Learn More: software.intel.com/intel-ipp

26

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ¹Available only in Intel[®] Parallel Studio XE Composer Edition.

Take Advantage of Intel® AVX-512 with Intel® IPP 2018 Intel® Integrated Performance Primitives (Intel® IPP)

Configuration: Intel® Xeon® Platinum 81xx Processor , Intel® Xeon® Platinum 8168 CPU @ 2.70GHz, L3=33 MB, 2x24 cores + HT, Ubuntu*-64, 109 GB, Intel® Compiler 18, Intel® IPP 2018. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit <u>www.intel.com/benchmarks</u>. Source: Intel Corporation – performance measured in Intel labs by Intel employees. <u>Optimization Notice:</u> Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessors. Certain optimizations in this product use reserved for Intel microprocessors. Performance negaring the specific instruction sets covered by this notice. Notice revision #20110804.

Optimization Notice

Get the Benefits of Advanced Threading with Intel® Threading Building Blocks

Use Threading Techniques to fully Leverage Multicore Performance & Heterogeneous Computing

- Parallelize computationally intensive work across CPUs, GPUs & FPGAs,—deliver higher-level & simpler solutions using C++
- Most feature-rich & comprehensive solution for parallel application development
- Highly portable, composable, affordable, & approachable future-proof scalability

What's New in 2018 edition

- New capabilities in Flow Graph improve concurrency and heterogeneity
- Improves insight into parallelism inefficiencies for Intel[®] VTune Amplifier 2018
- Support for Cmake file

Learn More: software.intel.com/intel-tbb

Optimization Notice

What's Inside Intel[®] Threading Building Blocks **PUG**

Parallel Execution Interfaces

Copyright © 2017, Intel Corporation. All rights reserved *Other names and brands may be claimed as the property of others. Interfaces Independent of Execution Model

Heterogeneous Support

Intel® Threading Building Blocks (Intel® TBB)

Intel[®] TBB flow graph as a coordination layer for heterogeneity—retains optimization opportunities and composes with existing models

CPUs, integrated GPUs, FPGAs, etc.

Intel® TBB as a **composability layer** for library implementations

• One threading engine *underneath* all CPU-side work

Intel TBB flow graph as a coordination layer

- Be the glue that connects heterogenous hardware and software together
- Expose parallelism between blocks—simplify integration

Intel[®] Threading Building Blocks

OpenVX* OpenCL* COI/SCIF

....

Optimization Notice

Excellent Performance Scalability with Intel® TBB on Intel® Xeon® Processor Intel® Threading Building Blocks 2018

Configuration: Software versions: Intel® C++ Intel® 64 Compiler, Version 17.4, Intel® Threading Building Blocks 2018 (Intel® TBB); Hardware: 2x Intel® Xeon® CPU E5-2699 v4@ 2.20GHz 44/T), 128GB Main Memory; Operating System: Red Hat Enterprise Linux Server* 7.2 (Maipo), kernel 3.10.0-327.4.5.e17.x86_64; Note: sudoku, primes and tachyon are included with Intel® TBB. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in full evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Benchmarks Source: Intel Corporation – performance measured in Intel labs by Intel employees. Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessors. Certain optimizations not specific to Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

Optimization Notice

Speedup Analytics & Machine Learning with Intel[®] Data Analytics Acceleration Library (Intel[®] DAAL)

- Highly tuned functions for classical machine learning and analytics performance across a spectrum of Intel[®] architecture devices
- Optimizes data ingestion together with algorithmic computation for highest analytics throughput
- Includes Python*, C++, Java* APIs, and connectors to popular data sources including Spark* and Hadoop*

Learn More: software.intel.com/daal

What's New in the 2018 Edition

- New Algorithms
 - Classification & Regression Decision Tree and Forest
 - k-NN
 - Ridge Regression
- Spark* MLlib-compatible API wrappers for easy substitution of faster Intel[®] DAAL functions
- Improved APIs for ease of use
- Repository distribution via YUM, APT-GET, and Conda

33

Optimization Notice

Algorithms, Data Transformation & Analysis

Intel® Data Analytics Acceleration Library

Algorithms supporting batch processing

Algorithms supporting batch, online and/or distributed processing

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

THE INTEL® XEON PHI® USERS

Intel[®] DAAL 2018 vs Apache Spark* MlLib Performance Intel[®] Data Analytics Acceleration Library (Intel[®] DAAL)

Configuration: 2x Intel[®] Xeon[®] E5-2660 CPU @ 2.60GHz, 128 GB, Intel[®] DAAL 2018; Alternating Least Squares – Users=1M Products=1M Ratings=10M Factors=100 Iterations=1 MLLib time=165.9 sec DAAL time=40.5 sec Gain=4.1x; Correlation – N=1M P=2000 size=37 GB Mllib time=169.2 sec DAAL=12.9 sec Gain=13.1x; PCA – n=10M p=1000 Partitions=360 Size=75 GB Mllib=246.6 sec DAAL (seq)=17.4 sec Gain=14.2x Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Source: Intel Corporation – performance measured in Intel labs by Intel employees. <u>Optimization Notice:</u> Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804.

Optimization Notice

INTEL® PARALLEL STUDIO XE Component tools

BUILD

Intel® C++ Compiler Intel® Fortran Compiler Intel® Distribution for Python* Intel® Math Kernel Library Intel® Integrated Performance Primitives Intel® Threading Building Blocks Intel® Data Analytics Acceleration Library Included in Composer Edition

ANALYZE

Intel® VTune™ Amplifier XE Intel® Advisor Intel® Inspector

Part of the Professional Edition

SCALE

Intel® MPI Library Intel® Trace Analyzer & Collector Intel® Cluster Checker

Part of the Cluster Edition

Analyze & Tune Application Performance & Scalability with Intel[®] VTune[™] Amplifier—Performance Profiler

Advanced Hotspots Hotspots viewpoint (change)							
🔄 🔜 Collection Log \ominus Analysis Target Å Analysis Type 🖞 Summary 🔌 Bottom-up 🗞 Caller/Callee 🗞 Top-down Tree 🖼 Platform 🛛 🕓							
Grouping: Function / Call Stack					~ %	Q .	
	CPU Time	▼	(K)	Context S	witch Time 🔍	Context ! ^	
Function / Call Stack	Effective Time by Utilization	Spin Time	Overhead	Wait Time	Inactive Time	Preempt	
updateBusinessAccount	7.915s 📕	0s	0s	0s	0.055s	ę	
main\$omp\$parallel_for@269	7.915s	0s	0s	0s	0.055s	-	
▶ <kmp_invoke_microtask [op<="" p="" ←=""></kmp_invoke_microtask>	7.915s 🛑	0s	0s	0s	0.042s	8	
▶ ▲ updateBusinessAccount ← mair	0s	0s	0s	0s	0.013s		
▶ updateCustomerAccount	7.766s	0s	0s	0s	0.052s	1,	
_kmpc_atomic_fixed8_add	2.772s	0s	0s				
kmpc_critical	0s	2.021s	0s	0s	0.014s	<u> </u>	
<	<	•	^	^	0.000	>	
Q*Q+Q-Q# 5.5s 5.6s	5.7s 5.8s 5.9s 5.994s 6.	s 6.2s 6.3s	6.4s	Ruler A	rea ≂ Region Inst	ance	
CMP Worker Thread	a tradit i Arresso constructiones e la calada de la constructiones e	an is share the arriver of	A1	Three	ad	*	
trimtest openmp (TID:	ne a de la companya de la companya de la companya de la dela	a tating astillations			Running		
OMP Worker Thread	states a reaction of the sector sector and the reaction	and the second second	· · · ·	, .	ontext Switche	5	
CPU Time	teadst. ma ted thestal, modalines in body (k	w. Andre Materia			Preemption Synchroniza Late CPU Time	ition rerhead 🗸	
FILTER 🕤 100.0% 🦕 Any	Proce 🗸 Any Thread 🗸 Any Mo	du 🗸 🛛 Any Uti 🗸	User fund	tio 🗸 Sh	ow inlir 🗸 🛛 F	unctions 🗸	

Save Time Optimizing Code

- Accurately profile C, C++, Fortran*, Python*, Go*, Java*, or any mix
- Optimize CPU, threading, memory, cache, storage & more
- Save time: rich analysis leads to insight

New for 2018 edition (partial list)

- Quick metrics for shared & distributed memory apps
- Cross-OS analysis e.g. analyze Linux* from Windows* or macOS*
- Profile inside containers

Learn More: software.intel.com/intel-vtune-amplifier-xe

Optimization Notice

Rich Set of Profiling Features for Multiple Markets Intel[®] VTune[™] Amplifier—Performance Profiler

Basic Profiling

Hotspots

- Threading Analysis
- Concurrency, Locks & Waits
- OpenMP, Intel[®] Threading Building Blocks

- Micro Architecture Analysis
- Cache, branch prediction, ...
- Vectorization + Intel® Advisor
- FLOPS estimates

MPI + Intel[®] Trace Analyzer & Collector

Scalability, imbalance, overhead

Use Memory Efficiently

Tune data structures & NUMA

- Optimize for High Speed Storage
 - I/O and compute imbalance

Intel[®] Media SDK Integration

Meaningful media stack metrics

Low Overhead Java*, Python*, Go*

Managed + native code

Containers

Docker*, Mesos*, LXC*

Optimize Private Cloud-Based Applications

Profile Native & Java* Apps in Containers—Intel® VTune™ Amplifier

Profile Enterprise Applications

- Native C, C++, Fortran
- Attach to running Java services (e.g., Mail)
- Profile Java daemons without restart

Accurate Low-overhead Data Collection

- Advanced hotspots and hardware events
- Memory analysis
- Accurate stack information for Java and HHVM

Popular Containers Supported

Docker* Mesos* LXC*

Software collectors (e.g. Locks & Waits) and Python profiling are not currently available for containers.

- No container configuration required
- Detection of container is automatic

Application Performance Snapshot Adds MPI

Data in One Place: MPI+OpenMP+Memory Floating Point—Intel[®] VTune[™] Amplifier

Quick & Easy Performance Overview

Does the app need performance tuning?

MPI & non-MPI Apps⁺

- Distributed MPI with or without threading
- Shared memory applications

Popular MPI Implementations Supported

- Intel[®] MPI Library
- MPICH & Cray MPI

Richer Metrics on Computation Efficiency

- CPU (processor stalls, memory access)
- FPU (vectorization metrics)

	Applicati	ion F	Performance	e Snapsho	ot				
	Application: my.app Report creation date: 2017-06 Number of naixe: 4 OpenAlp Direads per rank: 2 WP Platform Herit® Xeen(N) Logical Core Count per node: 21.007S Elapsed Time 226.007 SP.FLOPS	5-16 22:22:47 Processor cod 88 1.16 <u>CPI</u> (<u>MAX</u> 1.1	e named Broadwell-EP R 6, <u>MIN</u> 1.16)	Your application has significant OpenMP Imbalance. Use OpenMP profiling tools like Intel® VTune"* Amplifier to see the imbalance details. Supervision: Tweet Pervision: Tweet VPI.Time 2.84% <15% OpenMP, Imbalance: 36.40% N <10% Memory, Stalls 32.98% N <20% EPU Utilization 3.12% N >50% LQ.Round 0.00% <10%					
Itel	MPI.Time (2.84% of Elapsed Time (0.60s) MPI.Inbalance 1.83% of Elapsed Tin (0.33% N) TOP 5 MPI Functions Waitall Irecv Barrier Reduce Isend I/O Bound 0.00% (AVG 0.00, FEAK 0.00) Read AVG 0.0 KB, MAX 0. Write	me <u>%</u> 2.45 0.13 0.11 0.01 0.01 0 KB	OpenMP Imbalanc 36.40% of Elapsed Time (7.67s) Memory Footprint Per node: Perale: Persit: Pesk; 1795.30 MB Average: 1781.33 MB	e Memory. 32,98% of p Cache Sta 21,63% PRAM.Sta 1,50% of n NUMA 0,33% of n	Stalls inpeline slots IIs of cycles vycles remote accesses	PPU Utilization 3.12% ► SP.ELQPs per.Cycle 1.00 Out of 32.00 Vector Capacity Usage 33.10% ► PP Instruction Mix % of Packed/EP.Iostr: 10.80% % of 1282-bit 0.00% % of 52eJat EP.Iostr: 8.20% ► PP Arith/Mem Rd Instr. Ratio			

⁺MPI supported only on Linux*

Modernize Your Code with Intel® Advisor

Optimize Vectorization & Prototype Threading

See Vectorize & Thread or Performance Dies Configurations for 2010-2017 Benchmarks in Backup. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Benchmarks Source: Intel Corporation - performance measured in Intel labs by Intel employees.

Modern Performant Code

- Vectorized (uses Intel[®] AVX-512/AVX)
- Efficient memory access
- Threaded

Intel[®] Advisor

- Adds & optimizes vectorization
- Analyzes memory patterns
- Quickly prototypes threading

New for 2018 edition (partial list)

- Roofline analysis
- Targeted data collection
- More recommendations

Learn More: http: intel.ly/advisor-xe

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization: Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, & SSSE3 instruction sets & other optimizations. Intel does not guarantee the availability, unctionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessors-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information readring the specific instruction sets covered by this notice. Notice Revision 420110804

'Automatic' Vectorization is Often Not Enough

A good compiler can still benefit greatly from vectorization optimization—Intel® Advisor

Compiler will not always vectorize

- Check for Loop Carried Dependencies using <u>Intel[®] Advisor</u>
- All clear? Force vectorization. C++ use: pragma simd, Fortran use: SIMD directive

Not all vectorization is efficient vectorization

- Stride of 1 is more cache efficient than stride of 2 & greater. Analyze with <u>Intel[®] Advisor</u>
- Consider data layout changes
 <u>Intel[®] SIMD Data Layout Templates</u> can help

Benchmarks on prior slides did not all 'auto vectorize.'Compiler directives were used to force vectorization & get more performance.

Arrays of structures are great for intuitively organizing data, but are less efficient than structures of arrays. Use <u>Intel®</u> <u>SIMD Data Layout Templates</u> to map data into a more efficient layout for vectorization.

Get Breakthrough Vectorization Performance

Intel[®] Advisor—Vectorization Advisor

Faster Vectorization Optimization

- Vectorize where it will pay off most
- Quickly ID what is blocking vectorization
- Tips for effective vectorization
- Safely force compiler vectorization
- Optimize memory stride

Data & Guidance You Need

- Compiler diagnostics + Performance Data + SIMD efficiency
- Detect problems & recommend fixes
- Loop-Carried Dependency Analysis
- Memory Access Patterns Analysis

Ō	💿 Elapsed time: 70.29s 🧩 🗿 Vectorized 🖉 Not Vectorized 🦉									Sm	art Mode	9		۹.		
FILT	LTER: All Modules All Sources Loops And Functions All Threads INTEL ADVISOR 2018															
P	Summary 💥 Survey & Roofline 🍅 Refinement Reports															
R			@ Vector	с и т		Total	-	FLOPS	>	Why No	Vectoriz	ed Loops		≫	Trip 🛛	<u>ه</u> ا
OPFL	+ - Function Call Sites and Loops		Issues	Self Lime	2*	Time	Туре	GFLOPS	AI	Vectorization?	Vector	Efficiency	Gain	VL	Counts	
Ĩ.	⊕ [loop in S252 at loops90.f:1172]	-	9 1 Possible	3.129s	7.0%	3.129	Vectorized	0.191	0.115	🖬 1 vectorizat .	. AVX2	17%	1.36x	4; 8	99; 6; 1; 1	
	[이 년 10 cop in S2101 at loops90.f:1749]	-	2 Possible	2.765s	6.2%	2.765s	Scalar	0.1421	0.067	🖬 vectorizatio					12	
	⊕ [loop in s442_\$omp\$parallel_for		💡 1 Ineffecti	1.492s	3.4%	1.492s	Vectorized+	0.5861	0.165		AVX2	14%	1.09x	8	30; 1; 3	
	f_svml_sinf8_19			1.108s	2.5%	1.108s	Vector Funct	3.9111	0.156		AVX2					
	⊕ [loop in \$353 at loops90.f:2381]		9 1 Possible	0.989s	2.2%	0.989s	Vectorized (2.0231	0.134		AVX2	27%	2.16x	8	6; 4; 1	\sim
	< >	<													1	>

Optimize for Intel® AVX-512 with or without access to AVX-512 hardware

Optimization Notice

Find Effective Optimization Strategies

Cache-aware Roofline Analysis—Intel® Advisor

Roofline Performance Insights

- Highlights poor performing loops
- Shows performance 'headroom' for each loop
 - Which can be improved
 - Which are worth improving
- Shows likely causes of bottlenecks
- Suggests next optimization steps

Design It, Tune, Debug, Then Implement

Design with Disrupting Development—Intel® Advisor Thread Prototyping

Have You

- Threaded an app, but seen little benefit?
- Hit a "scalability barrier?"
- Delayed release due to synchronization errors?

Data Driven Threading Design

- Quickly prototype multiple options
- Project scaling on larger systems
- Find synchronization errors before implementing threading
- Design without disrupting development

Add Parallelism with Less Effort, Less Risk & More Impact

"Intel[®] Advisor allowed us to quickly prototype ideas for parallelism, saving developer time and effort"

Simon Hammond Senior Technical Staff **Sandia National Laboratories**

Optimization Notice

Flow Graph Analyzer as a technology preview THE INTEL® CALL Advisor XE

- Flow Graph Designer is a visualization tool that supports the analysis and design of parallel applications that use the Intel[®] Threading Building Blocks (Intel[®] TBB) flow graph interface
- The flow graph interface allows developers to express the dependency, streaming and data flow graphs present in many domains such as media, gaming, finance, high performance computing and healthcare

Debug Memory & Threading with Intel[®] Inspector Find & Debug Memory Leaks, Corruption, Data Races, Deadlocks

Debugger Breakpoints

Diagnose in hours instead of months

Learn More: intel.ly/inspector-xe

Correctness Tools Increase ROI by 12%-21%¹

- Errors found earlier are less expensive to fix
- Races & deadlocks not easily reproduced
- Memory errors are hard to find without a tool

Debugger Integration Speeds Diagnosis

- Breakpoint set just before the problem
- Examine variables and threads with the debugger

What's New in 2018 edition

- Fewer false positives
- C++ 17 std::shared_mutex added
- Windows SRW Locks added

¹Cost Factors – Square Project Analysis – CERT: U.S. Computer Emergency Readiness Team, and Carnegie Mellon CyLab NIST: National Institute of Standards & Technology: Square Project Results

Optimization Notice

INTEL® PARALLEL STUDIO XE Component tools

BUILD

Intel® C++ Compiler Intel® Fortran Compiler Intel® Distribution for Python* Intel® Math Kernel Library Intel® Integrated Performance Primitives Intel® Threading Building Blocks Intel® Data Analytics Acceleration Library Included in Composer Edition

ANALYZE

Intel® VTune™ Amplifier XE Intel® Advisor Intel® Inspector

Part of the Professional Edition

SCALE

Intel® MPI Library Intel® Trace Analyzer & Collector Intel® Cluster Checker

Part of the Cluster Edition

Boost Distributed Application Performance with Intel[®] MPI Library Performance, Scalability & Fabric Flexibility

Standards Based Optimized MPI Library for Distributed Computing

- Built on open source MPICH Implementation
- Tuned for low latency, high bandwidth & scalability
- Multi fabric support for flexibility in deployment

What's New in 2018 edition

- Up to 11x faster in job start-up time
- Up to 25% reduction in job finalization time
- Supports the latest Intel[®] Xeon[®] Scalable processor

Learn More: software.intel.com/intel-mpi-library

Optimization Notice

Intel[®] MPI Library Features

Optimized MPI Application Performance

- Application-specific tuning
- Automatic tuning
- Support for latest Intel[®] Xeon[®] & Intel[®] Xeon Phi[™] Processors
- Support for Intel[®] Omni-Path Architecture Fabric

Multi-vendor Interoperability & Lower Latency

- Performance optimized support for the fabric capabilities through OpenFabrics* (OFI)
- Industry leading latency

Faster MPI Communication - Optimized collectives

Sustainable Scalability

Native InfiniBand* interface support allows for lower latencies, higher bandwidth, and reduced memory requirements

More Robust MPI Applications

Seamless interoperability with Intel® Trace Analyzer & Collector

Intel[®] MPI Library = 1 library to develop, maintain & test for multiple fabrics

Optimization Notice

Profile & Analyze High Performance MPI Applications Intel® Trace Analyzer & Collector

Powerful Profiler, Analysis & Visualization Tool for MPI Applications

- Low overhead for accurate profiling, analysis & correctness checking
- Easily visualize process interactions, hotspots & load balancing for tuning & optimization
- Workflow flexibility: Compile, Link or Run

What's New in 2018 edition

- Support of OpenSHMEM* applications
- Supports the latest Intel[®] Xeon[®] Scalable and Intel[®] Xeon Phi[™] processors

Learn More: software.intel.com/intel-trace-analyzer

Optimization Notice

Efficiently Profile MPI Applications

Intel® Trace Analyzer & Collector

Helps Developers

- Visualize & understand parallel application behavior
- Evaluate profiling statistics & load balancing
- Identify communication hotspots

Features

- Event-based approach
- Low overhead
- Excellent scalability
- Powerful aggregation & filtering functions
- Idealizer
- Scalable

o		A 4 4 4 4 4 1 4 1
()ntim	ization	Notice
Optim		NOLICE

Lile <u>O</u> ptions <u>P</u> roje <u>E</u> ile <u>O</u> ptions <u>P</u> roje	ect <u>W</u> indows <u>H</u> elp						_ 8
View Charts Navigate	e <u>A</u> dvanced <u>L</u> ayout						
T E 69.173	3 734 - 69.372 292 : 0.198	558 Seconds 🔻	🛃 All_Nodes 🦻	Major Function	Groups 🔬 🍸 🔆	ے 🕩 🌗	<u> /4</u> 🛠
69.18 s	69.22 69.20 s	* 69.24 *	69.26 =	69.28 .	69.30 s 69.32 s	69.34 5	69.36 #
G node 1 Application	ApplidAcApplication		ApplidArApplication		ApplidApApplication		ApplicA;Application
G node 1-mic0 MPI	AMPL Application	MPI	AMPI Application	MPI	AN IPI Application	MPI	AMPI Application
G node 1-mic 1 <mark>/MPI</mark>	AMPI Application	MPI	AIMPI (Application	MPI	AIMPI (Application	MPI	AMPI (Application
G node 2 Application	Appli:AcApplication		ApplitApApplication		ApplidApApplication		ApplicApplication
G node2-mic0 MPI	AMPI Application	MPI	AMPI (Application	MPI	AMPI Application	MPI	Apter PlApplication
G node2-mic1	ApmPL:Application	MPI	IA MPI (Application	4MPI	AMPI (Application	MPI	AMPI Application
					\square		
G node3 Application	MpplidAcApplication		NApplidApApplication		AppleApApplication		MpplidApplication
	-						
G node3-mic0	AMPL Application	MPI	AMPI (Application	MPI	AMPI Application	MPI	AP IPI (Application
6 node3-mic1 MPI	AMPL Application	MPI	AIMPI (Application	MPI	ArMPI (Application	MPI	AMPI (Application
anode4 Application	ApplicAcApplication		ApplicApApplication		ApplidApApplication		ApplicApplication
i node4-mic0	AMPLApplication	MPI	AMPI (Application	MPI	AMPI (Application	MPI	AMPI (Application
G node4-mic14MPI	A(MPL4Application	MPI	AIMPI (Application	M PI	AMPI (Application	MPI	AMPI Application
4							
69.2421 s							

Intel[®] Cluster Checker 2018 For Linux* High Performance Compute Clusters

- **Clusters are Complex Systems!**
- Challenge is to reduce this complexity barrier for
- Application developers
- Cluster architects
- Cluster users
- System administrators
- Intel[®] Cluster Checker is an expert system approach that provides cluster systems expertise
- Verifies system health
- Offers suggested actions
- Provides extensible framework
- API for integrated support

Optimization Notice

Ensure Your HPC Cluster Components Work Together

New Features Improve Usability & Checking Capabilities

- Adds support for new Intel silicon & platform elements (processors, fabric, memory, storage, cluster provisioning, HPC platforms)
- Introduces simplified grouping of checks for extensibility
- Improves diagnostic output
- Validates Intel[®] Scalable System Framework Classic HPC Cluster Reference Architectures
- Check Intel[®] Omni-Path in-depth
- Analyze data from multiple database sources

Collects Diagnostic Data

Analyzes & Applies Rules

Suggests Remedies

(intel)

Pre-packed Cluster Systems Expertise as a Diagnostic Tool—Intel® Cluster Checker

For HPC Experts & those New to HPC

Top Features

Checks cluster functionality, uniformity, & performance

- ✓ Standard performance tests (e.g. DGEMM, HPL, Intel[®] MPI Benchmarks, IOzone, STREAM)
- ✓ Hardware & software uniformity
- ✓ Consistency for certain kernel & BIOS settings

Ability to embed, extend, & customize the checking capability (API, SDK)

Supports

- ✓ Intel[®] Xeon[®] & Intel[®] Xeon Phi[™] processor families
- ✓ Intel[®] Omni-Path Fabrics, Intel[®] True Scale, Ethernet*, InfiniBand*
- ✓ Red Hat Enterprise Linux* 6, 7—SUSE Linux Enterprise Server* 11, 12—Ubuntu 16.04, 17.04
- ✓ Intel[®] HPC Orchestrator Advanced, Lustre* filesystem

Installs with Intel® Parallel Studio XE 2018 Cluster Edition for Linux*

Expert System Based Design

Modeled on Clinical Decision Support Systems

Key Concepts

- Symptoms are subjective indications of health
- Signs are objective indications of health detected by direct observation
- Diagnoses are the identification of the root cause of an issue
- Remedies are methods to resolve an issue

Concept	Human	Cluster
Symptom	Difficulty walking; ankle hurts	Job is running slow
Signs	 Range of ankle motion limited to 50% of normal Ankle severely inflamed compared to non-injured leg X-ray negative for fracture 	 DGEMM performance is 50% of peak Zombie process is using 100% of the processor
Diagnosis	Sprained ankle	Zombie process is stealing cycles
Remedy	Ice ankle & keep it elevated, take 500 mg of ibuprofen every 4-6 hours	Kill the zombie process

WHICH TOOL SHOULD I USE?

Optimizing Performance On Parallel Hardware

It's an iterative process...

Optimization Notice Copyright © 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

intel

Performance Analysis Tools for Diagnosis

Intel[®] Parallel Studio

Optimization Notice

Tools for High Performance Implementation Intel® Parallel Studio

Optimization Notice

Legal Disclaimer and Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit <u>www.intel.com/benchmarks.</u>

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

Copyright © 2017, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Stay Current with Support for the Latest Standards, Operating Systems & Processors

Intel[®] Parallel Studio XE

Language Standards Support

- Full C++14 and initial C++ 2017 draft
- Full Fortran 2008 and initial Fortran 2015 draft
- Python 2.7 and 3.6
- Initial OpenMP 5.0 draft

Operating Systems

- Windows* 7 thru 10; Windows Server 2012-2016
- Debian* 8, 9; Fedora* 25; Red Hat Enterprise Linux* 6, 7; SUSE LINUX Enterprise Server* 11,12; Ubuntu* 14.04, 16.04
- macOS* 10.12

Development Environment Integration

- Microsoft Visual Studio* 2017
- Eclipse*
- Xcode*

Latest Processors

 Support and tuning added for Intel[®] Xeon[®] Scalable Processors & Intel[®] AVX-512 instructions

Complete Specifications

Modernize Your Code Program Intel[®] Parallel Studio XE

- Live webinars Fall series starts in Sept.
- Expert talks about new features
- Attend live or watch via archives <u>software.intel.com/events/hpc-webinars</u>
- Online community of BlackBelts, tools, trainings, support
- Intel[®] HPC Developer Conferences where devs share proven techniques best practices
- <u>Hands-on training</u> for devs & partners with remote access to Intel[®] Xeon[®] & Xeon Phi[™] processor-based clusters
- <u>Developer Access Program</u> provides early access to Intel[®] Xeon Phi[™] processors plus 1-yr license for Intel[®] Parallel Studio XE Cluster Edition

software.intel.com/moderncode

software.intel.com/moderncode

Boost Application Performance using Intel* Parallel Studio XE

Wednesday, September 13, 2017 9 AM PDT Learn how writing and tuning applications for today's and tomorrow's hardware is made easier with Intel® Parallel Studio XE. Read More

Increase Performance for Demanding Workloads on Intel[®] Xeon[®]

Processors

Wednesday, September 20, 2017 9 AM PDT

Find out how Intel[®] Performance Libraries, Compilers and Profilers can help you rock performance on your compute-heavy code. Read More

Better Threaded Performance and Scalability with Intel[®] VTune[™] Amplifier + OpenMP*

Wednesday, September 27, 2017 9 AM PDT

Got slow code? Learn how Intel® VTune® Amplifier and OpenMP* can uncover common bottlenecks and help you create faster code with low overhead. Read More

Memory Access Profiling: Find and Fix Common Performance Bottlenecks

Wednesday, October 4, 2017 9 AM PDT

See a demo of Intel[®] VTune[®] Amplifier's memory access analysis, then learn how it can help you find two common performance issues. Read

Is Python* Almost as Fast as Native Code? Believe It!

Advantages of Using Intel[®] Threading Building Blocks over other Threading Models

- Specify tasks instead of manipulating threads. Intel[®] Threading Building Blocks (Intel[®] TBB) maps your logical tasks onto threads with full support for nested parallelism
- Intel[®] TBB uses proven , efficient parallel patterns.
- Intel TBB uses work stealing to support the load balance of unknown execution time for tasks. This has the advantage of low-overhead <u>polymorphism</u>.
- Flow graph feature in Intel TBB allows developers to easily express dependency and data flow graphs.
- Has high level parallel algorithms, concurrent containers, and low level building blocks like scalable memory allocator, locks and atomic operations.

Algorithms supporting batch, online and/or distributed processing

Optimization Notice