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• Optimizing Numerical Weather Prediction (NWP) codes leads to faster 
forecast.

• “Navy Environmental Prediction sysTem Utilizing the NUMA corE”(NEPTUNE)
• This optimization targets intel KNL and potential future architectures 

because NWP codes port easily to Intel MIC as opposed to GPUs 
• Understand how to effectively use OpenMP for portable shared memory 

parallelism in the context of NEPTUNE.
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Motivation

NEPTUNE

Dynamics Physics (WSM6)

- Uses spectral elements --> high 
scalability because of small 
communication.

- Non-hydrostatic Unified Model 
of the Atmosphere

- Does not Scale Well

- Comprised of surface flux, boundary 
layer, shallow convection, warm-rain 
microphysics, and radiation processes 

- WSM6 is a components of the 
physics part of NEPTUNE 2



Physics Optimization Challenges

Vertical Physics  representation

Sea

Land

Water vapor

Cloud water Cloud ice

Rain Snow

Grauple

● WSM6 models various precipitation phenomena 
within vertical columns, exchanged through 
dynamics

○ 27 loops over 39 arrays with conditionals, array 
copies, and subroutine calls.

● Irregularity and complexity of physics between 

various states makes optimization challenging. Grauple Particles

Like soft hail 

and about 2-

5mm in 

diameter

WRF single-moment 6-class Microphysics Scheme (WSM6)
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Overview of KNL Architecture

Cores+L2

MCDRAM

(as mem)

DDR

Physical Addr Space
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MCDRAM
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Methodology

Identify 

Bottlenecks

Apply 

Findings 

to WSM6

Standalone 

Experiments

Identify Bottlenecks
- Wall clock time (at each loop)
Vtune profiler
- Adviser, compiler optrpt. output

Standalone Experiments
- Examine OpenMP, and structures  
of arrays (SOA) behavior on 
code’s subsets in controlled    
setting

Apply Findings to WSM6
- Threads (OMP PARALLEL, DO)
- SIMD (OMP SIMD, DO SIMD)
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Structure of Arrays (SOA)

...

SOA chunk size. 

Corresponds to parts of i 

loop.

- Simple example of SOA.

- Figure to the right shows actual SOA used in WSM6 optimization.

- Chunk size is chosen to be multiple of vector unit length.

- Top down optimization approach = From “high-level” to “low-level”

Basic AOS to SOA

Physics column

Transpose example
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Standalone Experiments

• OpenMP functionality with a non-trivial WSM6 loop

– OMP PARALLEL and OMP DO constructs Using WSM6 loop 12

– Functionality of conditionals and nested conditionals

– Functionality of subroutine calls

• Add OpenMP directives to individual loops

– OMP SIMD, OMP DO SIMD constructs

– On sample code with conditional and subroutine call

• SOA with 1D and 2D arrays

– Size and structure of SOA.
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Pthreads vs OpenMP (in C)

– OpenMP thread creation time is significant

⬤ The first PARALLEL section costs a lot

⬤ Subsequent PARALLEL sections (with small 
KMP_BLOCKTIME), or DO constructs within one section – not 
much worse than pthreads.

– Context switches are in fact slightly cheaper than with Pthreads

Pthread OpenMP

Threads Thread 
creation (us)

Context 
switch (us)

Thread 
creation (us)

Context
Switch (us)

2 199 0.6 14311 6.0

8 121 1.2 4209 1.4

32 102 1.0 1654 0.8

64 99 1.0 1417 0.9
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Impact of function calls and conditionals in 
OMP DO construct

- OMP DO With conditionals and
subroutine calls: 9.7x speedup at 64 
cores

- OMP DO Without conditionals and
subroutine calls: 30x speedup at 64 
cores

- Conditionals and function calls hurt 
scalability

- This behaves better with SIMD in 
actual WSM6 results:

⬤ Loops 12-14: 41x speedup with 
OMP DO SIMD

Loop 12 from WSM6

do k=kte,kts,-1

do i=its,ite

....

if(t(i,k).gt.t0c)then

....

work2(i,k)=venfac(p(i,k), t(i,k),den(i,k))

if(qrs(i,k,2).gt.0)then

....

psmlt(i,k)= xka(t(i,k),den(i,k)) ....

....

endif

if(qrs(i,k,3).gt.0)then

....

pgmlt(i,k)= xka(t(i,k),den(i,k)) ....

....

endif

endif

enddo

enddo

9



– OMP SIMD is beneficial for both conditionals 
and subroutines

⬤ Works fine with nested subroutines, 
when OMP DECLARE SIMD is used

– OMP PARALLEL + OMP SIMD (manual 
binding) was fastest

⬤ OMP DO SIMD slower than manual 
binding, but less so with conditionals

Time Speedup

OMP DO 2.88 24

Manual binding 0.63 109

OMP DO SIMD 0.61 112

manual binding + 

OMP SIMD
0.23 229

j →

← Thread 0

← Thread 1

← Thread 2

← Thread 3

⎨

Vector length 

for vectorization
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1D vs 2D Standalone Experiments

1D Case

2D Case

- Computation similar to some of the computation in WSM6.

- 1D Case: SIMD is applied on the j loop. Along j the access pattern 

are more involved than 2D.

- 2D Case: SIMD is applied on the i loop. No dependencies even in the 

case of WSM6.
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SOA Results 1D

- The table show results 

from a standalone 

experiment with 1D 

arrays as SOA.

- SOA yield good result 

but not the best.

- The transpose approach 

performs better

- uses more thread 

than original.

1D Case
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SOA Results 1D with Large Arrays

- The Table shows result a 

standalone experiment 

with increase size of the 

1D arrays 16x previous 

experiment with 1D 

arrays.

- Transpose still 

outperforms SOA.

- This indicate that the 

structure of SOA plays a 

role in performance.

1D Case
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SOA Results 2D with Large Arrays

- The table shows results 

from a standalone 

experiment with 1D arrays 

as SOA.

- SOA  outperforms here 

because we are able to 

better leverage vector units.

2D Case
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SOA Results 2D
- The Table shows result a 

standalone experiment with 

increase size of the 1D arrays 

16x previous experiment with 

2D arrays

- Transpose outperform the 

others

- SOA performs poorly because 

of cache missing. The size of 

arrays in the SOA doe not fit in 

cache. This memory access 

penalty.

- The key to using SOA are 

structure and size.

1D Case
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Chunk sizes

- Chunk size chunk = 32 provides better results.

- The chunk size have to be large enough to provide sufficient work to 

minimize the overhead related to thread usage. 
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WSM6 Optimization Effort
● “Low-level” OpenMP approach based on standalone experiments:

– Initialize all threads in an OMP PARALLEL section in wsm6init()

In main WSM6 body wsm62d() 

– OMP PARALLEL, and DO SIMD directives

– Merged loops to hide latency, removed redundant assignments

● Compare KNL and Haswell
– Haswell =  Intel Xeon  2.5 GHz, 72 cores with 2 threads per core
– Haswell has a higher clock frequency than KNL
– KNL has high higher bandwidth and larger L3/MCDRAM

● “Low level and high-level” Optimization with OpenMP and SOA
– SOA at a higher level in call stack
– SIMD at the lower level for vectorization
– Merged loops, and removed keywords (exit, cycle goto)
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Speedup per Loop Speedup

Loop KNL Haswell

1 14 4.9

2-4 19 4.5

5-6 36 10

7 15 4.2

slope_wsm6 55 8.7

8 14 3.7

9-11 6.9 3.7

12-14 41 3.0

15-17 74 19

18-19 3.5 4.2

slope_wsm6 45 5.6

20-21 34 2.8

22 98 13

23 100 5.5

24-26 57 12

27 .77 0.80

– slope_wsm6 has different speed-ups 
for the same routine. Thread 
invocation time and memory access 
impact runtime.

– Loop 22 and 23 are simple with no 
complex logic.

– Overall, good scalability to 64 cores on 
KNL.

– Includes loop 12 (from standalone 
example). OMP SIMD enables 41x 
speedup, including nested 
conditionals, subroutines 

– Final copy of the result arrays shows 
significant thrashing
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Removal of Fortran Keywords
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WSM6 Results

- The plot to the right clearly 

show that SOA outperform 

the Transpose approach.

- The Rain routines are part 

of the WSM6 Module itself.

- The plot to the left clearly 

show that using flat mode  

outperform the cache mode.

- These results are similar to 

the what we observe in the 

community.

- 70x Speed-up on WSM6
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Conclusion

● “Low-level” OpenMP with OMP DO SIMD achieves ~50x speedup over the 
25 parallelized loops of WSM6.

– Restructure non-trivial logic with nested conditionals, subroutine calls, 
and unaligned memory access to enable performance

– Vtune suggests 5.6% of peak in these sections

– Including bottlenecks, WSM6 within NEPTUNE is 3x faster than serial on 
KNL

● “High-level and low-level”

– Restructure of non-trivial loops

– SOA at top level call in WSM6 and SIMD at the lower level

– This approach led to 70x on WSM6
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Future Work
● Apply these methodologies to GFS operational physics in NEPTUNE

● Investigate the impact from translation between dynamics and physics

● Investigate behavior and scalability on large system i.e OpenMP + MPI

● Investigate other optimization Strategies

– lightweight runtime system for weather physics codes

– Other approaches for data reorganizations
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THANK YOU

Questions?
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