
Optimization Strategies for

WSM6

User Productivity Enhancement,
Technology Transfer, and Training (PETTT)

Presented by:

T.A.J.Ouermi, Aaron Knoll, Mike Kirby, Martin Berzins

1. Motivation

2. Overview of NEPTUNE and WSM6

3. Overview of KNL architecture

4. Methodology

5. Stand alone Experiments

6. WSM6 results

7. Discussion and Conclusion

Weather Physics

Intel Parallel
Computing Center 1

• Optimizing Numerical Weather Prediction (NWP) codes leads to faster
forecast.

• “Navy Environmental Prediction sysTem Utilizing the NUMA corE”(NEPTUNE)
• This optimization targets intel KNL and potential future architectures

because NWP codes port easily to Intel MIC as opposed to GPUs
• Understand how to effectively use OpenMP for portable shared memory

parallelism in the context of NEPTUNE.

c1

Motivation

NEPTUNE

Dynamics Physics (WSM6)

- Uses spectral elements --> high
scalability because of small
communication.

- Non-hydrostatic Unified Model
of the Atmosphere

- Does not Scale Well

- Comprised of surface flux, boundary
layer, shallow convection, warm-rain
microphysics, and radiation processes

- WSM6 is a components of the
physics part of NEPTUNE 2

Physics Optimization Challenges

Vertical Physics representation

Sea

Land

Water vapor

Cloud water Cloud ice

Rain Snow

Grauple

● WSM6 models various precipitation phenomena
within vertical columns, exchanged through
dynamics

○ 27 loops over 39 arrays with conditionals, array
copies, and subroutine calls.

● Irregularity and complexity of physics between

various states makes optimization challenging. Grauple Particles

Like soft hail

and about 2-

5mm in

diameter

WRF single-moment 6-class Microphysics Scheme (WSM6)

3

Overview of KNL Architecture

Cores+L2

MCDRAM

(as mem)

DDR

Physical Addr Space

Cores+L2
MCDRAM

(as cache)
DDR

4

Methodology

Identify

Bottlenecks

Apply

Findings

to WSM6

Standalone

Experiments

Identify Bottlenecks
- Wall clock time (at each loop)
Vtune profiler
- Adviser, compiler optrpt. output

Standalone Experiments
- Examine OpenMP, and structures
of arrays (SOA) behavior on
code’s subsets in controlled
setting

Apply Findings to WSM6
- Threads (OMP PARALLEL, DO)
- SIMD (OMP SIMD, DO SIMD)

5

Structure of Arrays (SOA)

...

SOA chunk size.

Corresponds to parts of i

loop.

- Simple example of SOA.

- Figure to the right shows actual SOA used in WSM6 optimization.

- Chunk size is chosen to be multiple of vector unit length.

- Top down optimization approach = From “high-level” to “low-level”

Basic AOS to SOA

Physics column

Transpose example

6

Standalone Experiments

• OpenMP functionality with a non-trivial WSM6 loop

– OMP PARALLEL and OMP DO constructs Using WSM6 loop 12

– Functionality of conditionals and nested conditionals

– Functionality of subroutine calls

• Add OpenMP directives to individual loops

– OMP SIMD, OMP DO SIMD constructs

– On sample code with conditional and subroutine call

• SOA with 1D and 2D arrays

– Size and structure of SOA.

7

Pthreads vs OpenMP (in C)

– OpenMP thread creation time is significant

⬤ The first PARALLEL section costs a lot

⬤ Subsequent PARALLEL sections (with small
KMP_BLOCKTIME), or DO constructs within one section – not
much worse than pthreads.

– Context switches are in fact slightly cheaper than with Pthreads

Pthread OpenMP

Threads Thread
creation (us)

Context
switch (us)

Thread
creation (us)

Context
Switch (us)

2 199 0.6 14311 6.0

8 121 1.2 4209 1.4

32 102 1.0 1654 0.8

64 99 1.0 1417 0.9

8

Impact of function calls and conditionals in
OMP DO construct

- OMP DO With conditionals and
subroutine calls: 9.7x speedup at 64
cores

- OMP DO Without conditionals and
subroutine calls: 30x speedup at 64
cores

- Conditionals and function calls hurt
scalability

- This behaves better with SIMD in
actual WSM6 results:

⬤ Loops 12-14: 41x speedup with
OMP DO SIMD

Loop 12 from WSM6

do k=kte,kts,-1

do i=its,ite

....

if(t(i,k).gt.t0c)then

....

work2(i,k)=venfac(p(i,k), t(i,k),den(i,k))

if(qrs(i,k,2).gt.0)then

....

psmlt(i,k)= xka(t(i,k),den(i,k))

....

endif

if(qrs(i,k,3).gt.0)then

....

pgmlt(i,k)= xka(t(i,k),den(i,k))

....

endif

endif

enddo

enddo

9

– OMP SIMD is beneficial for both conditionals
and subroutines

⬤ Works fine with nested subroutines,
when OMP DECLARE SIMD is used

– OMP PARALLEL + OMP SIMD (manual
binding) was fastest

⬤ OMP DO SIMD slower than manual
binding, but less so with conditionals

Time Speedup

OMP DO 2.88 24

Manual binding 0.63 109

OMP DO SIMD 0.61 112

manual binding +

OMP SIMD
0.23 229

j →

← Thread 0

← Thread 1

← Thread 2

← Thread 3

⎨

Vector length

for vectorization

10

1D vs 2D Standalone Experiments

1D Case

2D Case

- Computation similar to some of the computation in WSM6.

- 1D Case: SIMD is applied on the j loop. Along j the access pattern

are more involved than 2D.

- 2D Case: SIMD is applied on the i loop. No dependencies even in the

case of WSM6.

11

SOA Results 1D

- The table show results

from a standalone

experiment with 1D

arrays as SOA.

- SOA yield good result

but not the best.

- The transpose approach

performs better

- uses more thread

than original.

1D Case

12

SOA Results 1D with Large Arrays

- The Table shows result a

standalone experiment

with increase size of the

1D arrays 16x previous

experiment with 1D

arrays.

- Transpose still

outperforms SOA.

- This indicate that the

structure of SOA plays a

role in performance.

1D Case

13

SOA Results 2D with Large Arrays

- The table shows results

from a standalone

experiment with 1D arrays

as SOA.

- SOA outperforms here

because we are able to

better leverage vector units.

2D Case

14

SOA Results 2D
- The Table shows result a

standalone experiment with

increase size of the 1D arrays

16x previous experiment with

2D arrays

- Transpose outperform the

others

- SOA performs poorly because

of cache missing. The size of

arrays in the SOA doe not fit in

cache. This memory access

penalty.

- The key to using SOA are

structure and size.

1D Case

15

Chunk sizes

- Chunk size chunk = 32 provides better results.

- The chunk size have to be large enough to provide sufficient work to

minimize the overhead related to thread usage.

16

WSM6 Optimization Effort
● “Low-level” OpenMP approach based on standalone experiments:

– Initialize all threads in an OMP PARALLEL section in wsm6init()

In main WSM6 body wsm62d()

– OMP PARALLEL, and DO SIMD directives

– Merged loops to hide latency, removed redundant assignments

● Compare KNL and Haswell
– Haswell = Intel Xeon 2.5 GHz, 72 cores with 2 threads per core
– Haswell has a higher clock frequency than KNL
– KNL has high higher bandwidth and larger L3/MCDRAM

● “Low level and high-level” Optimization with OpenMP and SOA
– SOA at a higher level in call stack
– SIMD at the lower level for vectorization
– Merged loops, and removed keywords (exit, cycle goto)

17

Speedup per Loop Speedup

Loop KNL Haswell

1 14 4.9

2-4 19 4.5

5-6 36 10

7 15 4.2

slope_wsm6 55 8.7

8 14 3.7

9-11 6.9 3.7

12-14 41 3.0

15-17 74 19

18-19 3.5 4.2

slope_wsm6 45 5.6

20-21 34 2.8

22 98 13

23 100 5.5

24-26 57 12

27 .77 0.80

– slope_wsm6 has different speed-ups
for the same routine. Thread
invocation time and memory access
impact runtime.

– Loop 22 and 23 are simple with no
complex logic.

– Overall, good scalability to 64 cores on
KNL.

– Includes loop 12 (from standalone
example). OMP SIMD enables 41x
speedup, including nested
conditionals, subroutines

– Final copy of the result arrays shows
significant thrashing

18

Removal of Fortran Keywords

19

WSM6 Results

- The plot to the right clearly

show that SOA outperform

the Transpose approach.

- The Rain routines are part

of the WSM6 Module itself.

- The plot to the left clearly

show that using flat mode

outperform the cache mode.

- These results are similar to

the what we observe in the

community.

- 70x Speed-up on WSM6

20

Conclusion

● “Low-level” OpenMP with OMP DO SIMD achieves ~50x speedup over the
25 parallelized loops of WSM6.

– Restructure non-trivial logic with nested conditionals, subroutine calls,
and unaligned memory access to enable performance

– Vtune suggests 5.6% of peak in these sections

– Including bottlenecks, WSM6 within NEPTUNE is 3x faster than serial on
KNL

● “High-level and low-level”

– Restructure of non-trivial loops

– SOA at top level call in WSM6 and SIMD at the lower level

– This approach led to 70x on WSM6

21

Future Work
● Apply these methodologies to GFS operational physics in NEPTUNE

● Investigate the impact from translation between dynamics and physics

● Investigate behavior and scalability on large system i.e OpenMP + MPI

● Investigate other optimization Strategies

– lightweight runtime system for weather physics codes

– Other approaches for data reorganizations

Acknowledgements
DOD PETTT sponsors:

● DOD HPCMP PP-KY07-CWO-001-P3

● Alex Reinecke, Kevin Viner (NRL), Rajiv Bendale, Hugh Thornburg (Engility)

Additional consulting and hardware support:

● John Michelakes (UCAR), Lars Koesterke (TACC), and Intel Parallel Computing
Centers program

● This work continues under IPCC
22

THANK YOU

Questions?

23

