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•  Quantum	mechanics	can	provide	true	electronic	structure.	
•  Electronic	structure	oYen	provides	characteris,cs,	proper,es	&	behavior.	
•  This	method	allows	users	to	seek	specific	characteris,cs,	proper,es,	and	
behavior.	Computa,onal	design	of	materials.	

	

Mo,va,ons:		
	Quantum	mechanics	applied	to	materials	

Non-contact AFM for hexabenzocoronene: (L) 
Measured (Science 9/12/2012), (R) Simulated using 
PARSEC, and colorized 



Real	space	density	func,onal	theory	(DFT)	
with	pseudopoten,als.	

•  Approximate	exchange	correla,on	w/	local	density	approxima,on	
•  Pseudopoten,als	--	only	solve	for	valence	electrons	
•  Simplify	many	body	wave	equa,on	==>	O(Nelec

3)	ground	state	based	only	
on	an	effec,ve	poten,al	(the	electronic	density)	

•  Resul,ng	nonlinear	eigenproblem	with	Hamiltonian:	

Governing	Equa,ons:	Kohn-Sham	Equa,ons	
 



PARSEC	–	Pseudopoten,al	Algorithms	for	
Real	Space	Electronic	Calcula,ons	
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Real space DFT solver using Fortran 
Task-based, fine-grained algorithm 

Data/Task	dependency	=	massive	parallelism	
(Be$er	performance	on	exascale)	

Uses	a	tasked	vectorwise	Hamiltonian	

“Iterate,	roughly	in	this	order”:	
•  Sync	wavefunc,on	data	(for	stencils)	
•  Perform	sparse	matrix-vector	product	
•  Advance	to	next	wavefunc,on	



Subspace	Itera,on	&	Important	Details	

FLTR:	degree	m	Chebyshev	polynomial	
				filtering	of	Psi	through	recursion		
ORTH:	orthonormaliza,on	of	Psi[:,1:s]	
	
PROJ:	projec,on	of	orthonormal	basis		
DCMP:	eigendecomposi,on	of	quo,ent	matrix	
UPDT:	vectors	to	correct	the	orthonormal	basis	
	
PROJ,	DCMP,	and	UPDT	form	a	Rayleigh-Ritz	process	
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Overview	of	FLTR	kernel	workflow	

●  Hamiltonian H - sparse matrix-vector 
product 

●  X - block of subspace 
●  H was redesigned for OpenMP Task-

based stencil operations, designed for 
massive parallelism for extremely large 
systems. 



Overview	of	OpenMP	tasked	workflow	

do k=1,blksize 
!$OMP TASK FIRSTPRIVATE(.....) 
   1st tier function call 
      (or small conditional selection) 
!$OMP FLUSH 
!$OMP END TASK 
enddo 

select case (edgeval) 
 case(1) 
   call d222_DUL   (X2,X1,X3, invec,outvec) 
 case(2) 
   call d222_DUL   (X2,X3,X1, invec,outvec) 
… (17 options, multiple stencil functions, some overlap) 
 end select 

!$OMP DECLARE SIMD(z222_DUDU) UNIFORM(cDiag,cU) 
          do inner=1,8 
             outvec(inner) = cDiag * invec(inner) + outvec(inner) 
          enddo 
         outvec(1:2)=invec(3:4)*cU+outvec(1:2) 
         outvec(5:6)=invec(7:8)*cU+outvec(5:6) 
 

(1) Tasked, block size call 
 
 
(2) to a conditional function call statement 
     (edge/center, real/complex, etc…)  
 
 
(3) which calculates using the desired stencil. 



PARSEC	vs.	Compilers	(&	Performance	Tools)	

#ifdef ITAC 
  include 'VT.inc' 
  include 'vtcommon.inc' 
#endif 
 include 'vtcommon.inc' 
 

subroutine d222_DUL(cDiag,cU,cL,invec,outvec) !{{{ 
!$OMP DECLARE SIMD(d222_DUL) UNIFORM(cDiag,cU,cL)  
PARAMETER DEFINITION 
!DIR$ ASSUME_ALIGNED invec: 64 
!DIR$ ASSUME_ALIGNED outvec: 64 
      do inner=1,4 
          outvec(inner+shft) = cDiag * invec(inner+shft) + outvec(inner+shft) 
          outvec(inner)      =    cU * invec(inner+shft) + outvec(inner) 
          outvec(inner)      = cDiag * invec(inner)      + outvec(inner) 
          outvec(inner+shft) =    cL * invec(inner)      + outvec(inner+shft) 
      enddo 
end subroutine d222_DUL !}}} 

(1) ASSUME_ALIGNED gave substantial speedup in FLTR 
         functions, (allowed AVX512 vectorization), despite optrpt 
         stating the alignment statement was disregarded. 

(2) Misplaced ITAC global 
constants (COMMON block) 
library had a similar effect. 



PARSEC	Hyper-threading	Performance	

PARSEC shows good hyper-threading 
performance on both Haswell and KNL. 
 
Results from APS March Meeting 2017 
simulating a Silicon nanocluster. 

Cori Haswell 

Cori KNL 



KNL	and	Work	Throughput	

When utilizing appropriate algorithms, the primary efficiency hurdle is supplying the appropriate 
amount of computing power for a given problem size or vice versa. 



Mo,va,ons	of	the	Force	Update	

•  Forces are a critical output parameter and a method of comparison while testing. 
 
•  Previously entirely unthreaded & poorly optimized (other kernels took precedence). 
 
•  Want to implement in a way that allows for future changes (e.g. higher-order forces). 
 
•  Expected to take comparatively negligible amount of time, but: 
 
•  At large numbers of atoms or in complex systems, becomes prohibitively expensive. 
 
•  Can be substantially improved with extreme parallelism practices on KNL. 

Local Forces Non-Local Forces 



Original	Non-Local	Force	Calcula,on	

Original Force Pseudocode: 
 
do type 
   do atom 
      calc A & B 
      reduceAll A & B to master 
      calc ∆force = f(A&B) on master 
      store force on master 
   end atom 
end type 

Important Features 
 

➢  Each atom done completely due to size of A 
& B (30000 reals each at least, much higher 
with more complex features) vs. size of force 
(3 reals). 

 
➢ Math includes ∑A * ∑B, so both sums are 

completed and sent to the master rank and 
remaining work is done there. 

 
➢  Synchronized work: Each atom is done one 

at a time. 
 

➢  Sparse work: Physical space is split along 
ranks, so for a typical distribution, most ranks 
do not have data to contribute to each atom. 



Non-local	Force	Calcula,on	Loop	Changes	

do ist = 1, elec_st%eig(irp,kplp,jj)%nec 
   do i = l*l + 1, lp*lp 
      do j = 0,3 
 
         tvywd(ist,j,irp,kplp,i,isp) = & 
            tvywd(ist,j,irp,kplp,i,isp) & 
            + vylmd(j,m,i-l*l) * &  
            elec_st%eig(irp,kplp,jj)%dwf(mg,ist) & 
            * rsymm%chi(irp,itran) 
 

eigencount = elec_st%eig(irp,kplp,jj)%nec 
dwf(1:eigencount) = &  
      elec_st%eig(irp,kplp,jj)%wf(mg,1:eigencount) 
do i = l*l + 1, lp*lp 
    do ist = 1, eigencount 
 
       vywf(ist,i,irp,kplp,isp) = & 
          vywf(ist,i,irp,kplp,isp) & 
          + vylmd(m,i-l*l,0) * dwf(ist) & 
          * rsymm%chi(irp,itran) * p_pot%ekbi(lp,ity) 
 
       div_proj(ist,i,irp,kplp,isp,1) = & 
          div_proj(ist,i,irp,kplp,isp,1) & 
          + vylmd(m,i-l*l,1) * dwf(ist) & 
          * rsymm%chi(irp,itran) 

       ... 

Module variables 
stored locally. 
 
Loops and arrays 
reordered. 
 
Array broken into 
two arrays. 
 
3-size dimension 
unrolled. 
 
Combined with 
another loop. 
 
 

Old loop New loop 



Improved	Non-local	Force	Calcula,on	
do type 
   BUILD COMMS: 
   MPI_COMM_SPLIT(atom, rank_has_data) 
   !$OMP DO 
   do atom  
      if comm(atom) = MPI_COMM_NULL, cycle 
      calc A & B 
      reduceAll(comm(atom), A) 
      calc ∆force = f(A&B) 
      reduceAll(comm(atom), ∆force) 
      store locally with master of comm(atom)  
   end atom 
   !$OMP END DO 
end type 
reduceAll(world, ∆force) 
do atom 
   calc force = force + ∆force on master 
end atom 

Key Changes 
 

➢  Implemented THREAD_MULTIPLE. 
 

➢  Atom loop is threaded, allowing multiple 
atoms to be solved simultaneously. 

 
➢  Preemptively create an array of comms, one 

for each atom, that allow mpi ranks without 
data to move to the next atom. 

 
➢  Final storage on the master is performed 

outside the main calculation loop. 
 

➢  For larger problems (with # of atoms > max 
MPI comms): Added an additional loop to 
create and free comms using large atom 
batches. 



Threading	Comparison	(VTune)	

forcnloc (363 sec) THREAD_MULTIPLE 
OFF 

THREAD_MULTIPLE ON (113 sec)  

Si3917H103
6 

Cori KNL: 16 nodes, 64 ranks, 17 threads/rank 



Non-Local	Force	Scaling	Results	

  5k atoms: Stampede2 KNL w/ 16 nodes, 64 ranks, 17 threads/rank 
  8k atoms: Stampede2 KNL w/ 32 nodes, 128 ranks, 17 threads/rank 
13k atoms: Stampede2 KNL w/ 64 nodes, 256 ranks, 17 threads/rank 
23k atoms: Stampede2 KNL w/ 256 nodes, 512 ranks, 34 threads/rank 

Threading MPI_COMM_SPLIT. 
Currently being investigated for 
extremely large numbers of atoms. 

A, B and Δforce calcs 
vectorized and threaded.  
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Threaded	MPI_COMM_SPLIT	Methodology	

!$OMP	PARALLEL	DO	DEFAULT(NONE)&	
do	thread	=	1,	omp_threads	
			do	atomsubset	=	1,	atomsperthread	
						iat	=	calc	subset	index(	thread,	atomsubset	)	
						ja	=	calc	global	index(	thread,	atomgroup,	atomsubset,	type	)	
						if	(has_data(ja))	then	
									call	MPI_COMM_SPLIT(commworld(thread),	1,	0,	comm(iat),	err)	
									rank_has_data	=	1	
						else	
									call	MPI_COMM_SPLIT(commworld(thread),	MPI_UNDEFINED,		
																																																																																												0,	comm(iat),	err)	
!$OMP	END	PARALLEL	DO	
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●  Each thread gets a duplicate of 
MPI_COMM_WORLD to 
simultaneously communicate 
through. 

 
●  Requires a thread loop & subset 

loop to properly index the atom. 
 
●  Key = 1: has data, add your rank to 

this atom’s comm. 
 
Key = MPI_UNDEFINED: has no 
data, build a MPI_NULL_COMM. 
 

●  Currently, serial runs faster than 
threaded. 

 
 
 
 
 



Si3917H1036 Cori KNL: 16 nodes, 64 ranks, 17 threads/rank THREAD_MULTIPLE ON  
(w/ threaded comm_split)  

51 sec (comm_split) 
THREAD_MULTIPLE ON 

106 sec  
113 sec  


