
	Scaling	and	op,miza,on	results	of	
the	real-space	DFT	solver	PARSEC	

on	Haswell	and	KNL	systems	
	

Kevin	GoG1*,	Charles	Lena2,	Ariel	Biller3,	Josh	Neitzel2,	Kai-Hsin	Liou2,	
Jack	Deslippe1,	James	R	Chelikowsky2	

	
1	NERSC,	Lawrence	Berkeley	Na,onal	Laboratory	

2	University	of	Texas	at	Aus,n	
3	Weizmann Institute of Science

	
IXPUG	Annual	Fall	Conference	2017	 1	

•  Quantum	mechanics	can	provide	true	electronic	structure.	
•  Electronic	structure	oYen	provides	characteris,cs,	proper,es	&	behavior.	
•  This	method	allows	users	to	seek	specific	characteris,cs,	proper,es,	and	
behavior.	Computa,onal	design	of	materials.	

	

Mo,va,ons:		
	Quantum	mechanics	applied	to	materials	

Non-contact AFM for hexabenzocoronene: (L)
Measured (Science 9/12/2012), (R) Simulated using
PARSEC, and colorized

Real	space	density	func,onal	theory	(DFT)	
with	pseudopoten,als.	

•  Approximate	exchange	correla,on	w/	local	density	approxima,on	
•  Pseudopoten,als	--	only	solve	for	valence	electrons	
•  Simplify	many	body	wave	equa,on	==>	O(Nelec

3)	ground	state	based	only	
on	an	effec,ve	poten,al	(the	electronic	density)	

•  Resul,ng	nonlinear	eigenproblem	with	Hamiltonian:	

Governing	Equa,ons:	Kohn-Sham	Equa,ons	

PARSEC	–	Pseudopoten,al	Algorithms	for	
Real	Space	Electronic	Calcula,ons	

4	

Real space DFT solver using Fortran
Task-based, fine-grained algorithm

Data/Task	dependency	=	massive	parallelism	
(Be$er	performance	on	exascale)	

Uses	a	tasked	vectorwise	Hamiltonian	

“Iterate,	roughly	in	this	order”:	
•  Sync	wavefunc,on	data	(for	stencils)	
•  Perform	sparse	matrix-vector	product	
•  Advance	to	next	wavefunc,on	

Subspace	Itera,on	&	Important	Details	

FLTR:	degree	m	Chebyshev	polynomial	
				filtering	of	Psi	through	recursion		
ORTH:	orthonormaliza,on	of	Psi[:,1:s]	
	
PROJ:	projec,on	of	orthonormal	basis		
DCMP:	eigendecomposi,on	of	quo,ent	matrix	
UPDT:	vectors	to	correct	the	orthonormal	basis	
	
PROJ,	DCMP,	and	UPDT	form	a	Rayleigh-Ritz	process	

5	

Overview	of	FLTR	kernel	workflow	

●  Hamiltonian H - sparse matrix-vector
product

●  X - block of subspace
●  H was redesigned for OpenMP Task-

based stencil operations, designed for
massive parallelism for extremely large
systems.

Overview	of	OpenMP	tasked	workflow	

do k=1,blksize
!$OMP TASK FIRSTPRIVATE(.....)
 1st tier function call
 (or small conditional selection)
!$OMP FLUSH
!$OMP END TASK
enddo

select case (edgeval)
 case(1)
 call d222_DUL (X2,X1,X3, invec,outvec)
 case(2)
 call d222_DUL (X2,X3,X1, invec,outvec)
… (17 options, multiple stencil functions, some overlap)
 end select

!$OMP DECLARE SIMD(z222_DUDU) UNIFORM(cDiag,cU)
 do inner=1,8
 outvec(inner) = cDiag * invec(inner) + outvec(inner)
 enddo
 outvec(1:2)=invec(3:4)*cU+outvec(1:2)
 outvec(5:6)=invec(7:8)*cU+outvec(5:6)

(1) Tasked, block size call

(2) to a conditional function call statement
 (edge/center, real/complex, etc…)

(3) which calculates using the desired stencil.

PARSEC	vs.	Compilers	(&	Performance	Tools)	

#ifdef ITAC
 include 'VT.inc'
 include 'vtcommon.inc'
#endif
 include 'vtcommon.inc'

subroutine d222_DUL(cDiag,cU,cL,invec,outvec) !{{{
!$OMP DECLARE SIMD(d222_DUL) UNIFORM(cDiag,cU,cL)
PARAMETER DEFINITION
!DIR$ ASSUME_ALIGNED invec: 64
!DIR$ ASSUME_ALIGNED outvec: 64
 do inner=1,4
 outvec(inner+shft) = cDiag * invec(inner+shft) + outvec(inner+shft)
 outvec(inner) = cU * invec(inner+shft) + outvec(inner)
 outvec(inner) = cDiag * invec(inner) + outvec(inner)
 outvec(inner+shft) = cL * invec(inner) + outvec(inner+shft)
 enddo
end subroutine d222_DUL !}}}

(1) ASSUME_ALIGNED gave substantial speedup in FLTR
 functions, (allowed AVX512 vectorization), despite optrpt
 stating the alignment statement was disregarded.

(2) Misplaced ITAC global
constants (COMMON block)
library had a similar effect.

PARSEC	Hyper-threading	Performance	

PARSEC shows good hyper-threading
performance on both Haswell and KNL.

Results from APS March Meeting 2017
simulating a Silicon nanocluster.

Cori Haswell

Cori KNL

KNL	and	Work	Throughput	

When utilizing appropriate algorithms, the primary efficiency hurdle is supplying the appropriate
amount of computing power for a given problem size or vice versa.

Mo,va,ons	of	the	Force	Update	

•  Forces are a critical output parameter and a method of comparison while testing.

•  Previously entirely unthreaded & poorly optimized (other kernels took precedence).

•  Want to implement in a way that allows for future changes (e.g. higher-order forces).

•  Expected to take comparatively negligible amount of time, but:

•  At large numbers of atoms or in complex systems, becomes prohibitively expensive.

•  Can be substantially improved with extreme parallelism practices on KNL.

Local Forces Non-Local Forces

Original	Non-Local	Force	Calcula,on	

Original Force Pseudocode:

do type
 do atom
 calc A & B
 reduceAll A & B to master
 calc ∆force = f(A&B) on master
 store force on master
 end atom
end type

Important Features

➢  Each atom done completely due to size of A
& B (30000 reals each at least, much higher
with more complex features) vs. size of force
(3 reals).

➢ Math includes ∑A * ∑B, so both sums are

completed and sent to the master rank and
remaining work is done there.

➢  Synchronized work: Each atom is done one

at a time.

➢  Sparse work: Physical space is split along
ranks, so for a typical distribution, most ranks
do not have data to contribute to each atom.

Non-local	Force	Calcula,on	Loop	Changes	

do ist = 1, elec_st%eig(irp,kplp,jj)%nec
 do i = l*l + 1, lp*lp
 do j = 0,3

 tvywd(ist,j,irp,kplp,i,isp) = &
 tvywd(ist,j,irp,kplp,i,isp) &
 + vylmd(j,m,i-l*l) * &
 elec_st%eig(irp,kplp,jj)%dwf(mg,ist) &
 * rsymm%chi(irp,itran)

eigencount = elec_st%eig(irp,kplp,jj)%nec
dwf(1:eigencount) = &
 elec_st%eig(irp,kplp,jj)%wf(mg,1:eigencount)
do i = l*l + 1, lp*lp
 do ist = 1, eigencount

 vywf(ist,i,irp,kplp,isp) = &
 vywf(ist,i,irp,kplp,isp) &
 + vylmd(m,i-l*l,0) * dwf(ist) &
 * rsymm%chi(irp,itran) * p_pot%ekbi(lp,ity)

 div_proj(ist,i,irp,kplp,isp,1) = &
 div_proj(ist,i,irp,kplp,isp,1) &
 + vylmd(m,i-l*l,1) * dwf(ist) &
 * rsymm%chi(irp,itran)

 ...

Module variables
stored locally.

Loops and arrays
reordered.

Array broken into
two arrays.

3-size dimension
unrolled.

Combined with
another loop.

Old loop New loop

Improved	Non-local	Force	Calcula,on	
do type
 BUILD COMMS:
 MPI_COMM_SPLIT(atom, rank_has_data)
 !$OMP DO
 do atom
 if comm(atom) = MPI_COMM_NULL, cycle
 calc A & B
 reduceAll(comm(atom), A)
 calc ∆force = f(A&B)
 reduceAll(comm(atom), ∆force)
 store locally with master of comm(atom)
 end atom
 !$OMP END DO
end type
reduceAll(world, ∆force)
do atom
 calc force = force + ∆force on master
end atom

Key Changes

➢  Implemented THREAD_MULTIPLE.

➢  Atom loop is threaded, allowing multiple
atoms to be solved simultaneously.

➢  Preemptively create an array of comms, one

for each atom, that allow mpi ranks without
data to move to the next atom.

➢  Final storage on the master is performed

outside the main calculation loop.

➢  For larger problems (with # of atoms > max
MPI comms): Added an additional loop to
create and free comms using large atom
batches.

Threading	Comparison	(VTune)	

forcnloc (363 sec) THREAD_MULTIPLE
OFF

THREAD_MULTIPLE ON (113 sec)

Si3917H103
6

Cori KNL: 16 nodes, 64 ranks, 17 threads/rank

Non-Local	Force	Scaling	Results	

 5k atoms: Stampede2 KNL w/ 16 nodes, 64 ranks, 17 threads/rank
 8k atoms: Stampede2 KNL w/ 32 nodes, 128 ranks, 17 threads/rank
13k atoms: Stampede2 KNL w/ 64 nodes, 256 ranks, 17 threads/rank
23k atoms: Stampede2 KNL w/ 256 nodes, 512 ranks, 34 threads/rank

Threading MPI_COMM_SPLIT.
Currently being investigated for
extremely large numbers of atoms.

A, B and Δforce calcs
vectorized and threaded.

Acknowledgements	

The CCM Team at University of Texas, Austin

Extra	Slides	

Threaded	MPI_COMM_SPLIT	Methodology	

!$OMP	PARALLEL	DO	DEFAULT(NONE)&	
do	thread	=	1,	omp_threads	
			do	atomsubset	=	1,	atomsperthread	
						iat	=	calc	subset	index(thread,	atomsubset)	
						ja	=	calc	global	index(thread,	atomgroup,	atomsubset,	type)	
						if	(has_data(ja))	then	
									call	MPI_COMM_SPLIT(commworld(thread),	1,	0,	comm(iat),	err)	
									rank_has_data	=	1	
						else	
									call	MPI_COMM_SPLIT(commworld(thread),	MPI_UNDEFINED,		
																																																																																												0,	comm(iat),	err)	
!$OMP	END	PARALLEL	DO	
	

19	

●  Each thread gets a duplicate of
MPI_COMM_WORLD to
simultaneously communicate
through.

●  Requires a thread loop & subset

loop to properly index the atom.

●  Key = 1: has data, add your rank to

this atom’s comm.

Key = MPI_UNDEFINED: has no
data, build a MPI_NULL_COMM.

●  Currently, serial runs faster than
threaded.

Si3917H1036 Cori KNL: 16 nodes, 64 ranks, 17 threads/rank THREAD_MULTIPLE ON
(w/ threaded comm_split)

51 sec (comm_split)
THREAD_MULTIPLE ON

106 sec
113 sec

