EEEEEEEEEEEEEEEEEEEEEEEEEEE

Scaling and optimization results of
the real-space DFT solver PARSEC
on Haswell and KNL systems

Kevin Gott!", Charles Lena?, Ariel Biller3, Josh Neitzel?, Kai-Hsin Liou?,
Jack Deslippel, James R Chelikowsky?

1 NERSC, Lawrence Berkeley National Laboratory
2 University of Texas at Austin

3 Weizmann Institute of Science

IXPUG Annual Fall Conference 2017 1

Motivations: YPUG

Quantum mechanics applied to materials =~

* Quantum mechanics can provide true electronic structure.

* Electronic structure often provides characteristics, properties & behavior.

* This method allows users to seek specific characteristics, properties, and
behavior. Computational design of materials.

. 99 ©
o W_W._oe
® U W _W_oe
&:,"& &
U & ‘
L ,&, ,&, Vonourad (Seience 6112120121 (%) Smulatod using
. PARSEC, and colorized

Real space density functional theory (DFT) DPU RRRRRRR
with pseudopotentials.

Approximate exchange correlation w/ local density approximation
Pseudopotentials -- only solve for valence electrons

Simplify many body wave equation ==> O(N,,..2) ground state based only
on an effective potential (the electronic density)

Resulting nonlinear eigenproblem with Hamiltonian:

Governing Equations: Kohn-Sham Equations

{—%V2+VH [p(r)]w,—m[p(r)]+vu.[p(r)ﬂwf(r>=Wir)
p(r)= 2NZT:!%(I‘)|2

PARSEC — Pseudopotential Algorithms for
Real Space Electronic Calculations

[Input: hRM, 0k

ISelect Initial V' = Vatomic

!

’Calc initial basis {¢;} (diag) ‘

|

N
@)
‘Q

p(r) =23 tf?
}

’VH : =V2Vy = 47p(r) ‘

!
‘/zc = f [p(r)]

Vaew = fMixing(Vvion +Vu + Vzc, V) ‘

!

‘ |Vnew - V| < tol stop ¥; = ¢;

|

V= Vnew

Uses a tasked vectorwise Hamiltonian

|

’ Filter basis ; (with Hpe,y)+orth. }—

DPUG

THE INTEL® XEON PHI™ USERS GROUP

Yo Real space DFT solver using Fortran

Task-based, fine-grained algorithm

Data/Task dependency = massive parallelism
(Better performance on exascale)

“Iterate, roughly in this order”: 5 |
* Sync wavefunction data (for stencils) k|)
« Perform sparse matrix-vector product
* Advance to next wavefunction ,

DPUG

THE INTEL®* XEON PHI* USERS GROUP

Subspace lteration & Important Details

_ 2O-k+l

FLTR: degree m Chebyshev polynomial ¥ _— H-cI)X -0, 0. X
filtering of Psi through recursion ket (L) g A
k—1
ORTH: orthonormalization of Psi[:,1:s] Lo 2 <W.i ’Wk> 1
l//k - Wk < L L J
J=1 W_,' 9W_,'
PROJ: projection of orthonormal basis G. = *H
DCMP: eigendecomposition of quotient matrix i Wi wj

UPDT: vectors to correct the orthonormal basis GW — DW

y=yW

PROJ, DCMP, and UPDT form a Rayleigh-Ritz process

Overview of FLTR kernel workflow

Algorithm 2: Scaled Chebysheyv filtering algorithm from PARSEC.

Input: V € RV*¢, H : RN — R”, Chebyshev polynomial order m,
lowest bound a, lower bound ar, upper bound b
Output: Filtered V

allocate blk comm. buffers // ar = a in nonscaled vers.

ke = 8/blk; k(1 :m) = nux/m; e = (b—a)/2; e, = 2/e;

c=(b+a)/2;0=¢€/(c—ar);01=0;

0. = 01/e; oy = 0; vk = 1 - blk;

Aligned fastmem allocate Vj1y, Viz}, Vi3 € CV*** do kn, = 1,m

do Kpioer = 1t Ky,

vk = vk + blk; iteratively prime blk buffers
Vi1 = Versok+bik—1;

Vizy = H(Vpay, buffers);

Vigy = (V{z} —C* V{l}) * Oeis

do i = 2, pm(k,,) // each degree is dictated by the
pm array

iteratively prime blk buffers;

|| Vis = H(Vizy, buffers); oo = 1/(2/o1 —0); |

Vigy = (Visy —cx Vigy) x ey

Visy = Vigy — o * Vauys

Viy = Viay;
Vigy = Vigy * 03;
g = 09,

Vikwksbik—1 = Vi)
sigma =¢e/(c—ayr)
3.1 cleanup buffers;

Xk+1 =

20-k+1 (

Hamiltonian H - sparse matrix-vector
product

X - block of subspace

H was redesigned for OpenMP Task-
based stencil operations, designed for
massive parallelism for extremely large
systems.

DPUG

THE INTEL® XEON PHI™ USERS GROUP

H- CI)Xk — 0,10 X,

DPUG

Overview of OpenMP tasked workflow

do k=1,blksize
ISOMP TASK FIRSTPRIVATE(.....)
1st tier function call
(or small conditional selection)
ISOMP FLUSH
ISOMP END TASK
enddo

ISOMP DECLARE SIMD(z222_DUDU) UNIFORM(cDiag,cU)
do inner=1,8
outvec(inner) = cDiag * invec(inner) + outvec(inner)
enddo
outvec(1:2)=invec(3:4)*cU+outvec(1:2)
outvec(5:6)=invec(7:8)*cU+outvec(5:6) x

select case (edgeval)
case(1)

call d222 DUL (X2,X1,X3, invec,outvec)
case(2)

call d222 DUL (X2,X3,X1, invec,outvec)

... (17 options, multiple stencil functions, some overlap)

end select

(1) Tasked, block size call

<\\ (2) to a conditional function call statement
(edgel/center, real/complex, etc...)

(3) which calculates using the desired stencil.

UG

PARSEC vs. Compilers (& Performance Tools)™

(1) ASSUME_ALIGNED gave substantial speedup in FLTR
functions, (allowed AVX512 vectorization), despite optrpt
stating the alignment statement was disregarded.

subroutine d222 DUL(cDiag,cU,cL,invec,outvec) K{{
I$SOMP DECLARE SIMD(d222_ DUL) UNIFORM(cDiag,cU,cL)
PARAMETER DEFINITION
IDIR$ ASSUME_ALIGNED invec: 64
IDIR$ ASSUME_ALIGNED outvec: 64
do inner=1,4
outvec(inner+shft) = cDiag * invec(inner+shft) + outvec(inner+shft)
outvec(inner) = cU * invec(inner+shft) + outvec(inner)
outvec(inner) = cDiag * invec(inner) + outvec(inner)
(

outvec(inner+shft) = cL * invec(inner) + outvec(inner+shft)
enddo

end subroutine d222_DUL !}}}

(2) Misplaced ITAC global
constants (COMMON block)
library had a similar effect.

#ifdef ITAC
include 'VT.inc'
include 'vtcommon.inc'
#endif

PARSEC Hyper-t

nreading Performance

DPUG

THE INTEL® XEON PHI™ USERS GROUP

Cori Haswell

FLTR Timings Physical (32) Intel HT (64)
Average - StDev - Average - StDev - HyperThread| Runtime
MPI RANKS | SECONDS SECONDS | SECONDS SECONDS Speedup Reduction
1 22.22 4.61 15.26 1.53 1.46 31.33%
2 18.34 0.23 14.90 4.56 1.23 18.79%
4 20.10 3.97 11.81 0.42 1.70 41.27% M
8 16.64 2.68 12.16 1.79 1.37 26.97%
16 19.08 3.40 14.45 2.13 1.32 24.27%
32 19.25 3.60 14.13 0.56 1.36 26.60%
Average -
SECO,%DS TOTAL Speedup
MPI RANKS| 68 136 272 |2HT |4 HT
Cori KNL 68 24.81 19.46 16.58 [1.28 1.50
34 2448 17.43 1491 (140 1.64
~ 17 21.28 14.53 16.36 (1.46 1.30
16 65.30
4 22.80
2 23.52 28.96
1 39.32

PARSEC shows good hyper-threading
performance on both Haswell and KNL.

Results from APS March Meeting 2017
simulating a Silicon nanocluster.

KNL and Work Throughput &8s At

When utilizing appropriate algorithms, the primary efficiency hurdle is supplying the appropriate
amount of computing power for a given problem size or vice versa.

Si28H36 MPI TOTAL HW THREADS SPEEDUP
Hamil. Rank |RANKS 68 136 272 2 HT 4 HT
1 11.55 8.52 7.63 1.36 1.51

855568 2 15.33 15.1 17.45 1.02 0.88

4 16.04 16.39 19.45 0.98 0.82

1 21.52 15.88 14.18 1.36 1.52

1575616 2 27.83 25.64 28.165 1.09 0.99
4 27.11 25.915 29.225 1.05 0.93

DPUG

MOtivatiOnS Of the Force Update THE INTEL® XEON PHI* USERS GROUP

Vioe(rs) G im OE;;

Fo= f — d’r+22, (AV},)Gy - .
P() eeemmm—— - ,,%,, < lm (9!‘ aR:

<«— Local Forces > <« Non-Local Forces —>

» Forces are a critical output parameter and a method of comparison while testing.

* Previously entirely unthreaded & poorly optimized (other kernels took precedence).
« Want to implement in a way that allows for future changes (e.g. higher-order forces).
» Expected to take comparatively negligible amount of time, but:

« At large numbers of atoms or in complex systems, becomes prohibitively expensive.

« Can be substantially improved with extreme parallelism practices on KNL.

DPUG

Original Non-Local Force Calculation

Original Force Pseudocode:

do type
do atom
calcA&B
reduceAll A & B to master
calc Aforce = f(A&B) on master
store force on master
end atom
end type

Important Features

> Each atom done completely due to size of A
& B (30000 reals each at least, much higher
with more complex features) vs. size of force
(3 reals).

> Math includes > A * > B, so both sums are
completed and sent to the master rank and
remaining work is done there.

> Synchronized work: Each atom is done one
at a time.

> Sparse work: Physical space is split along
ranks, so for a typical distribution, most ranks
do not have data to contribute to each atom.

Non-local Force Calculation Loop Changes

UG

THE INTEL® XEQN PHI* USERS GROUP

Old loop

New loop

~
doist = 1, elec_st%eig(irp,kplp,jj)%nec \

doi=1I*1+1,Ip*lp AN
doj=0,3 - /
tvywd(ist,j,irp,kplp,i,isp) = &
tvywd(ist,j,irp,kplp,i,isp) &
+ vylmd(j,m,i-I"l) * &
elec_st%eig(irp,kplp,jj)%dwf(mg,ist) &
* rsymm%ochi(irp,itran)

- —

——

Module variables
stored locally.

| Loops and arrays

reordered.

Array broken into
two arrays.

3-size dimension
unrolled.

Combined with
another loop.

_W eigencount = elec_st%eig(irp,kplp,jj)%nec
dwf(1:eigencount) = &
elec_st%eig(irp,kplp.jj)%wf(mg,1:eigencount)
7 doi=1"+ 1, Ip*lp
do ist = 1, eigencount
N~
vywf(ist,i,irp,kplp,isp) = &
— —Ppp Vywf(ist,i,irp,kplp,isp) &
+ vyImd(m.,i-I*1,0) * dwf(ist) &
\ \ * rsymm%chi(irp,itran) * p_pot%ekbi(lp,ity)
N\ div_proj(ist,i,irp,kplp,isp,1) = &
div_proj(ist,i,irp,kplp,isp,1) &
+ vylmd(m,i-I*,1) * dwf(ist) & /

5* rsymm%chi(irp,itran)

‘—
—— /
——
—

DPUG

Improved Non-local Force Calculation

do type Key Changes
BUILD COMMS:
MPI_COMM_SPLIT(atom, rank_has_data) > Implemented THREAD_MULTIPLE.
ISOMP DO . _ _
do atom > Atom loop is threaded, allowing multiple
if comm(atom) = MPI_COMM_NULL, cycle atoms to be solved simultaneously.
calcA&B

reduceAll(comm(atom), A) > Preemptively create an array of comms, one
calc Aforce = f(A&B) ' for each atom, that allow mpi ranks without

reduceAll(comm(atom), Aforce) data to move to the next atom.

store locally with master of comm(atom) > Final storage on the master is performed

end atom : : -

ISOMP END DO outside the main calculation loop.
end type :
reduceAll(world, Aforce) > For larger problems (with # o_f_atoms > max
do atom MPI comms): Added an additional loop to

create and free comms using large atom
batches.

calc force = force + Aforce on master
end atom

Threading Comparison (VTune)

THREAD_MULTIPLE
OFF

IOMP Master Thread #0 (...

MPUG

THE INTEL* XEON PHI* USERS GROUP

forenloc (363 sec) Gori KNL: 16 nodes, 64 ranks, 17 threads/rank
¢ >

OMP Worker Thread #4 (... |l

IOMP Worker Thread #2 (...

|OMP Worker Thread #3 (...

[OMP Worker Thread #1 (...

|OMP Worker Thread #5 (...

THREAD_MULTIPLE ON (113 sec) N
|OMP Master Thread #0 (... Si H
[OMP Worker Thread #13.. 39177 7103
|0MP Worker Thread #15.... -hunning
|OMP Worker Thread #14... Wk CPU Time
IOMP Worker Thread # 16 4 Spin and Overhead Time
IOMP Worker Thread #7 (... MPI Busy Wait Time

|IOMP Worker Thread #2 (...

MXPUG

Non-Local Force Scaling Results

@ THREAD_MULTIPLE OFF @ THREAD_MULTIPLE ON (w/ threaded comm_split) THREAD_MULTIPLE ON

2000
A, B and Aforce calcs
vectorized and threaded. Threading MPI_COMM_SPLIT.
1500 Currently being investigated for
§ extremely large numbers of atoms.
2
17
@ 1000
&)
()
£
= 500
0
5000 10000 15000 20000
of Atoms (-)
5k atoms: Stampede2 KNL w/ 16 nodes, 64 ranks, 17 threads/rank

8k atoms: Stampede2 KNL w/ 32 nodes, 128 ranks, 17 threads/rank
13k atoms: Stampede2 KNL w/ 64 nodes, 256 ranks, 17 threads/rank
23k atoms: Stampede2 KNL w/ 256 nodes, 512 ranks, 34 threads/rank

MXPUG

THE INTEL* XEON PHI* USERS GROUP

Acknowledgements

THE UNIVERSITY OF

TEXAS

— AT AUSTIN ——
. °. CC M T 9.
CENTER FOR
COMPUTATIONAL
MATERIALS Welch

FOUNDA

/ T "'

—

The CCM Team at University of Texas, Austin

Extra Slides

EEEEEEEEEEEEEEEEEEEEEEEEEEE

DPUG

THE INTEL®* XEON PHI* USERS GROUP

Threaded MPI_COMM_SPLIT Methodology

ISOMP PARALLEL DO DEFAULT(NONE)&
do thread = 1, omp_threads
do atomsubset = 1, atomsperthread
iat = calc subset index(thread, atomsubset)
ja = calc global index(thread, atomgroup, atomsubset, type)
if (has_data(ja)) then
call MPI_COMM_SPLIT(commworld(thread), 1, 0, comm(iat), err)
rank_has data=1
else
call MPI_COMM_SPLIT(commworld(thread), MPI_UNDEFINED,
0, comm(iat), err)
ISOMP END PARALLEL DO

Each thread gets a duplicate of
MPI_COMM_WORLD to
simultaneously communicate
through.

Requires a thread loop & subset
loop to properly index the atom.

Key = 1: has data, add your rank to
this atom’s comm.

Key = MPI_UNDEFINED: has no
data, build a MPI_NULL_COMM.

Currently, serial runs faster than
threaded.

19

THREAD_MULTIPLE ON Sisg17H 1036 Cori KNL: 16 nodes, 64 ranks, 17 threads/rank IPUG

(w/ threaded comm_split)
OMP Master Thread #0 (...
OMP Worker Thread #13...
OMP Worker Thread #15...
OMP Worker Thread #14...
OMP Worker Thread #16...
OMP Worker Thread #2 (...
OMP Worker Thread #4 (...
OMP Worker Thread #10...
OMP Worker Thread #7 (...

THE INTEL* XEON PHI* USERS GROUP

> €
51 sec (comm_split) 106 sec
THREAD_MULTIPLE ON 113 sec

A

A 4

OMP Master Thread #0 (...
OMP Worker Thread #13...
OMP Worker Thread #15...
OMP Worker Thread #14...
OMP Worker Thread #16...
OMP Worker Thread #7 (...
OMP Worker Thread #2 (...
OMP Worker Thread #6 (...
OMP Worker Thread #11...

[Running

Wuk CPU Time

Jluk Spin and Overhead Time
MPI Busy Wait Time

