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Optimization focus

Time-to-Solution

Utilizing tuned math libraries™
(FFTW, MKL, ELPA, ...) N

Vectorization: AVX512 N

High Bandwidth Memory

Strong scaling limit

Number of processors

v
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3,624 KNL nodes, 9.65petaFIOPS

Adding extra layers of
parallelization -> increase
intrinsic scaling limit
Reducing communication
overhead to reach the
intrinsic limit




Outline

* WEST — additional layers of parallelization

e Band parallelization of Sternheimer equation

e Task group parallelization to fit 3D FFTs within single KNL node to
reduce communication overheads and take advantage of HBM

e Qbox — reduce communication overheads of dense

linear algebra with on-the-fly data redistribution

e Gather & scatter remap
* Transpose remap

e Conclusions and insights
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<m' > Optoelectronic calculations using |XDUG
1

many-body perturbation theory (GW)

Linear response theory Massively parallel

| Y — by distributing

9 9 9 perturbations
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Single perturbation runtime (4BG/Q vs 1KNL)  wowemre

2000 - 3D FFT D(Z)GEMM others | * 80% of runtime is spent in
external libraries

1.2x * 3.7x speedup from BG/Q(ESSL)

1.5x to KNL(MKL)
2.1x 1.9x

>
1500 - 1.0x ﬁ 1 CdSe, 884 electrons

3 7x * High-bandwidth memory on
500- ' Theta critical for performance
(e.g. 3D FFTs): 3.1x speedup
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Improvement of strong scaling by

band parallelization

without band para.
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© - with band para.

— SizsH46, 176 electrons
— 256 perturbations
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T Cost: AllReduce
Image para. once across
Band para. band groups

(relatively cheap)

Increased parallelism by arranging the
MPI ranks in a 3D grid (perturbations &
bands & FFT)

New intrinsic strong scaling limit:
nproc = NperthbandeZ



Time per 16 FFTs [second]

Improving performance of 3D FFTs using task group

10° |
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s ] ===a_ \ Cost for data
S == redistribution
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qg) | =@~ fft(ideal) —@— ALLTOALL(orig)
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| —e— FFT(ideal) 1072 1 =k fft(tg) —A ALLTOALLV(tg)
64 128 256 64 128 256
MPI tasks (nproc) MPI tasks (nproc) MPI Alltoall
Strong scaling of 3D FFT (plane and pencil decomposition) on Cetus (BG/Q) within single
and Theta (KNL) using 256x256x256 FFT grid KNL node

Small 3D FFTs do not scale well across multiple KNL nodes because of internode communication
overheads relative to shared-memory MPI. Task groups (tg) redistribute complete wave
functions to separate nodes to simultaneously compute multiple 3D FFTs.
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Outline

e Qbox — reduce communication overheads of dense

linear algebra with on-the-fly data redistribution

e Gather & scatter remap
* Transpose remap
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Strong scaling of Qbox for hybrid-DFT calculations rewesxomisascor

Time per iteration [second]

F. Gygi and |. Duchemin J. Chem. Theory Comput., 2013, 9 (1), pp 582-587

SiC512
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electrons, PBEO

O
O

[@® tota
OO exc
OO hpsi

@@ wf update |

103

104

MPI tasks

10°

dgemm

Exact exchange
3D FFTs

dgemm, Gram-Schmidt
(syrk, potrf, trsm)

10



Data layout: block distribution of wave functions IMXQU,SG

to 2D process grid
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Good scaling for 3D
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Poor scalability of ScaLAPACK for tall-skinny matrices and small
square matrices due to communication overheads

Gram-Schmidt

Wave function
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Reducing communication overheads from IPUG
ScaLAPACK with “gather & scatter” remap

Gather & scatter communication pattern

Solution: creating a context with fewer | |
columns and on-the-fly data redistribution . 8 12 . 8 12
 Compute 3D FFTs on original grid

. 1 5 9 13 1 5 9 13

 Run ScalAPACK on smaller grid

. . 2 6 10 14 2 6 10 14
The remap communication pattern
only involves procs within same row or
column. 387011 a5 3 @ 11 15
Key: remap communication time 4x4 4x2
needs to be small. Schematic of gather & scatter remap, gray

processes are idle during ScaLAPACK computation
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Improvement of strong scaling using IPUG

“gather & scatter” remap
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MPI tasks

hpsi + wf_update time remains minimal relatively flat with
remap, and the remap time (custom) is two orders of magnitude
smaller than hpsi + wf_update time.

Custom remap function is 1000x faster than ScaLAPACK’s pdgemr2d.
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Improvement of Qbox’s strong scaling after
optimizations; runtime of improves from ~400 to
~30s per SCF iteration (13x speedup) on 131,072

ranks for 2048 electrons.
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Reducing communication overheads from IPUG
ScaLAPACK by “transpose” remap

Problem of “gather & scatter”: Transpose communication pattern 70 -
. . = 60 - ] =64 (512 nod
How to utilize them? Assign idle 0 8 ° 60 nProw=64 (512 nodes)
processes to active columns. 0f| 4 ) 8] 12 A 5 § 50 1 1.0
S — m
Transpose remap: " s | w40
. 1 5 9 13
* Perform 3D FFTs in the 5 P D 5
.. s
original context. : i S . 2 Bx
- Transfer data through a series | 2 ° 10 i B
of local regional transposes 10 A
3 11
* Run ScaLAPACK in the new SHTE LT L i 0
context k2 original  gather transpose
4 x4 8x?2 & scatter
Key concept for remap: creating different Process rearrangement and data Improvement of runtime by remap methods
contexts that are optimal for different kernels  movement of transpose remap (1) npcol’ = TCl nprow’ = nprow

redistributing the data on-the-fly , peol
(2) npcol’ = T ,nprow’ = 8Xnprow
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Conclusion and Insights

* Band parallelization reduces the internode communication overhead and improves
strong scaling of WEST up to NpgprNpert Npana cOres.

* Optimal remapping of data for matrix operations in Qbox reduces ScaLAPACK
communication overhead at large scale, and makes hybrid- DFT calculation scale to
NFFTNband cores.

e Given the increased computational performance relative to network bandwidths, it is
crucial to reduce and/or hide inter-node communication costs.

* Guiding principles for developing codes in many-core architecture:

1) Parallelizing independent, fine-grain units of work, reducing inter-node communication, and
maximizing utilization of on-node resources.

2) Optimizing communication patterns for performance critical kernels with on-the-fly data
redistribution and process reconfiguration.
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