

Performance optimization of WEST and Qbox on Intel Knights Landing

Huihuo Zheng¹, Christopher Knight¹, Giulia Galli^{1,2},

Marco Govoni^{1,2}, and Francois Gygi³

¹Argonne National Laboratory

²University of Chicago

³University of California, Davis

September 27th, 2017

ALCF Theta Early Science Project (Tier 1): First-Principles Simulations of Functional Materials for Energy Conversion

Embedded nanocrystal T. Li, Phys. Rev. Lett. 107,

206805 (2011)

Matters at extreme conditions

D. Pan et al Proc. Nat'l Acd. Sci. **110**, 6250 (2013)

Organic photovoltaics
M. Goldey Phys. Chem.
Chem. Phys., Advance
Article (2016)

theory 1b₁
experiment

1b₂3a₁

1b₂3a₁

1cl

40 30 20 10
electron binding energy (eV)

Aqueous solution
A.Gaiduk et al.,
J. Am. Chem. Soc.
Comm. (2016)

Quantum information *H Seo, Sci Rep. 2016; 6:* 20803.

http://qboxcode.org/; http://west-code.org; http://www.quantum-espresso.org/

M. Govoni, G. Galli, J. Chem. Theory Comput. 2015, 11, 2680-2696

P. Giannozzi, et al J.Phys.:Condens.Matter, 21, 395502 (2009)

Optimization focus

Time-to-Solution

3,624 KNL nodes, 9.65petaFIOPS

- Adding extra layers of parallelization -> increase intrinsic scaling limit
- Reducing communication overhead to reach the intrinsic limit

Outline

- WEST additional layers of parallelization
 - Band parallelization of Sternheimer equation
 - Task group parallelization to fit 3D FFTs within single KNL node to reduce communication overheads and take advantage of HBM
- Qbox reduce communication overheads of dense linear algebra with on-the-fly data redistribution
 - Gather & scatter remap
 - Transpose remap
- Conclusions and insights

Optoelectronic calculations using many-body perturbation theory (GW)

Linear response theory

$$\Delta \rho = \chi \Delta V_{pert}$$

Electronic density

Response function

Perturbation potential

Massively parallel by distributing perturbations

Parallelization scheme (image groups & plane wave)

Intrinsic strong scaling limit $nproc \sim N_{pert} \times N_z$

Single perturbation runtime (4BG/Q vs 1KNL)

- 80% of runtime is spent in external libraries
- 3.7x speedup from BG/Q(ESSL) to KNL(MKL)
- High-bandwidth memory on Theta critical for performance (e.g. 3D FFTs): 3.1x speedup

Improvement of strong scaling by band parallelization

Increased parallelism by arranging the MPI ranks in a 3D grid (perturbations & bands & FFT)

New intrinsic strong scaling limit: $nproc = N_{pert} \times N_{band} \times N_{z}$

Improving performance of 3D FFTs using task group

Small 3D FFTs do not scale well across multiple KNL nodes because of internode communication overheads relative to shared-memory MPI. Task groups (tg) redistribute complete wave functions to separate nodes to simultaneously compute multiple 3D FFTs.

Outline

- WEST additional layers of parallelization
 - Band parallelization of Sternheimer equation
 - Task group parallelization to fit 3D FFTs within single KNL node to reduce communication overheads and take advantage of HBM
- Qbox reduce communication overheads of dense linear algebra with on-the-fly data redistribution
 - Gather & scatter remap
 - Transpose remap
- Conclusions and insights

Strong scaling of Qbox for hybrid-DFT calculations

to 2D process grid

Poor scalability of ScaLAPACK for tall-skinny matrices and small square matrices due to communication overheads

Solution: creating a context with fewer columns and on-the-fly data redistribution

- Compute 3D FFTs on original grid
- Gather data to smaller grid
- Run ScaLAPACK on smaller grid
- Scatter data back to original grid

The remap communication pattern only involves procs within same row or column.

Key: remap communication time needs to be small.

Gather & scatter communication pattern

Schematic of gather & scatter remap, gray processes are idle during ScaLAPACK computation

Improvement of strong scaling using "gather & scatter" remap

Improvement of Qbox's strong scaling after optimizations; runtime of improves from ~400 to ~30s per SCF iteration (13x speedup) on 131,072 ranks for 2048 electrons.

Custom remap function is 1000x faster than ScaLAPACK's pdgemr2d.

Reducing communication overheads from ScaLAPACK by "transpose" remap

Problem of "gather & scatter":

Idle processes.

How to utilize them? Assign idle processes to active columns.

Transpose remap:

- Perform 3D FFTs in the original context.
- Transfer data through a series of local regional transposes
- Run ScaLAPACK in the new context

Key concept for remap: creating different contexts that are optimal for different kernels redistributing the data on-the-fly

Transpose communication pattern

Process rearrangement and data movement of transpose remap

Improvement of runtime by remap methods

(1)
$$npcol' = \frac{npcol}{8}$$
, $nprow' = nprow$

(2)
$$npcol' = \frac{npcol}{8}$$
, $nprow' = 8 \times nprow$

Conclusion and Insights

- Band parallelization reduces the internode communication overhead and improves strong scaling of WEST up to $N_{\rm FFT}N_{pert}N_{band}$ cores.
- Optimal remapping of data for matrix operations in Qbox reduces ScaLAPACK communication overhead at large scale, and makes hybrid- DFT calculation scale to $N_{\rm FFT}N_{band}$ cores.
- Given the increased computational performance relative to network bandwidths, it is crucial to reduce and/or hide inter-node communication costs.
- Guiding principles for developing codes in many-core architecture:
- 1) Parallelizing independent, fine-grain units of work, reducing inter-node communication, and maximizing utilization of on-node resources.
- 2) Optimizing communication patterns for performance critical kernels with on-the-fly data redistribution and process reconfiguration.

Acknowledgement

- This research is part of Theta Early
 Science Project at Argonne Leadership
 Computing Facility, which is a DOE
 Office of Science User Facility under
 Contract DE-AC02-06CH11357.
- This work was supported by MICCoM, as part of Comp. Mats. Sci. Program funded by the U.S. DOE, Office of Science, BES, MSE Division.

Office of Science

