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Introduction 

Irregularities caused by events like timer interrupts are already recognized as a 
problem for highly parallel applications running on multi-core processors. Linux 
tickless kernel is becoming a standard option on HPC compute nodes, but it does 
not eliminate OS noise completely.
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The idea

• Intel® Xeon Phi™ Processors are divided into host CPUs (visible by OS) and
hidden CPUs initialized from the driver module (not visible for OS).

• The memory space is shared between host and hidden CPUs.

• The solution does not require any Linux kernel modifications.

• We are using simple scheduling which simulates the data level parallelism (DLP)
approach - doing the same work on different data using all available hidden
CPUs.
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Solution Architecture
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Environment setup

1. Hide a subset of processors by removing appropriate entries from 
the MADT ACPI table

2. Put the modified ACPI table into initrd

3. Boot Linux kernel with the modified initrd

4. Load the driver

5. Boot the hidden CPUs by specifying their APIC IDs in SYSFS
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Initialization control flow

1. Application initializes the runtime library.

2. The runtime library reserves the hidden CPUs 
and uses the driver to request to execute its 
code there.

3. The driver initializes the hidden CPUs and 
starts executing the “idle” loop.

4. The hidden CPUs wait for the work from 
Application.

Work: 

• pointer to function

• pointer to data
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Offload control flow

1. Application offloads the work to hidden CPUs

Register values are preserved as they would be in a 
normal function call

2. The hidden CPUs get the work and run it

This happens without any interaction with the OS

3. When the work is done the hidden CPUs wait 
(using Ring 3 MWAIT) while the application 
gets the results

API supports synchronous and asynchronous calls
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Runtime API example
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#include "rt.h"

/* Run on hidden CPU */

void fun(void *param)

{

int *d = (int*)param;

while (*d--);

}

int main()

{

int loops = 100;

struct rt_ctx *ctx;

struct rt_work work = {fun, &loops};

if (ctx = rt_init()) {

/* synchronous offload */

rt_run(ctx, &loops);

/* loops equals 0 at this point */

rt_exit(ctx);

}

}
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Performance - setup

Hardware:
• Intel® Xeon Phi™ Processor 7250, 68 cores @ 1.4GHz, 16 GB MCDRAM Flat/Quadrant
• 6 x 32 GB DDR4
• First 4 cores (16 CPUs) visible to OS
• Remaining CPUs are hidden

Software:
• RedHat* 7.3 + 4.11 kernel

• Configured with 7800 MCDRAM hugepages
• Intel® Composer XE 2017.4.056

Benchmarks:
• The STREAM Benchmark used as reference
• Modified STREAM using hugepages and __assume_aligned(64) compiler hint
• Runtime compiled to run on host CPUs and compiled to run on hidden CPUs
• Common problem size - 1.4 GiB
• All measurements on 4-67 CPUs
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Performance - STREAM
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Measurement Result [%]

Reference 100

Experiment 1 100

Experiment 2 106

Experiment 3 107

Experiment 4 107.5

Reference experiment : 
• STREAM Benchmark using OpenMP
• nohz_full=1-271
Experiment 1:
• STREAM using OpenMP
• nohz_full=1-271 isolcpus=1-271
Experiment 2:
• Modified STREAM using OpenMP
• nohz_full=1-271 isolcpus=1-271
Experiment 3: 
• Modified STREAM using runtime compiled to run on host
• nohz_full=1-271 isolcpus=1-271
Experiment 4:
• Modified STREAM using runtime compiled to use hidden CPUs
• nohz_full=1-271 isolcpus=1-271 Performance gain with 

additional OS noise reduction



Performance stability 
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Current Limitations

• The hidden CPUs cannot handle page faults. 
Memory used by the computation kernel must be backed by physical 
pages before running it and it can’t change during the run.

• System calls cannot be called from the computation kernel

• It is required to use custom synchronization between host and driver
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Conclusions and Insights

It works
• The solution is stable
• x86_64 only
• It performs quite well, but there is still place for further 

optimizations

Place for improvements
• Improve scalability
• Tackle the limitations from the previous slide
• Benchmark more complex workloads
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Thank you

The Team:

• Łukasz Odzioba lukasz.odzioba@intel.com

• Łukasz Daniluk lukasz.daniluk@intel.com

• Paweł Karczewski pawel.karczewski@intel.com

• Jarosław Kogut jaroslaw.kogut@intel.com

• Krzysztor Góreczny krzysztof.goreczny@intel.com
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Legal Disclaimer & Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY 
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS 
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS 
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY 
RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations 
and functions.  Any change to any of those factors may cause the results to vary.  You should consult other information and performance 
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with 
other products. 

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are 
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel 

microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the 

availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent 

optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are 

reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific 

instruction sets covered by this notice.

Notice revision #20110804
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