
Reducing OS noise using offload driver
on Intel® Xeon Phi™ Processor

Grzegorz Andrejczuk grzegorz.andrejczuk@intel.com
Jaroslaw Kogut jaroslaw.kogut@Intel.com

Intel Technology Poland

IXPUG Annual Fall Conference 2017 1

mailto:grzegorz.andrejczuk@intel.com
mailto:jaroslaw.kogut@Intel.com

Introduction

Irregularities caused by events like timer interrupts are already recognized as a
problem for highly parallel applications running on multi-core processors. Linux
tickless kernel is becoming a standard option on HPC compute nodes, but it does
not eliminate OS noise completely.

2IXPUG Annual Fall Conference 2017

The idea

• Intel® Xeon Phi™ Processors are divided into host CPUs (visible by OS) and
hidden CPUs initialized from the driver module (not visible for OS).

• The memory space is shared between host and hidden CPUs.

• The solution does not require any Linux kernel modifications.

• We are using simple scheduling which simulates the data level parallelism (DLP)
approach - doing the same work on different data using all available hidden
CPUs.

IXPUG Annual Fall Conference 2017 3

Solution Architecture

IXPUG Annual Fall Conference 2017 4

Modified SW

Intel® Xeon Phi™ Processor

Linux Kernel Driver

Runtime library

Application

Exposed CPUs (4) Hidden CPUs(64)

Not modified SW

Hardware

BIOS

Environment setup

1. Hide a subset of processors by removing appropriate entries from
the MADT ACPI table

2. Put the modified ACPI table into initrd

3. Boot Linux kernel with the modified initrd

4. Load the driver

5. Boot the hidden CPUs by specifying their APIC IDs in SYSFS

5IXPUG Annual Fall Conference 2017

Initialization control flow

1. Application initializes the runtime library.

2. The runtime library reserves the hidden CPUs
and uses the driver to request to execute its
code there.

3. The driver initializes the hidden CPUs and
starts executing the “idle” loop.

4. The hidden CPUs wait for the work from
Application.

Work:

• pointer to function

• pointer to data

IXPUG Annual Fall Conference 2017 6

Host

Userspace

Driver
Userspace

Driver
Kernelspace

Host
Kernelspace

Offload control flow

1. Application offloads the work to hidden CPUs

Register values are preserved as they would be in a
normal function call

2. The hidden CPUs get the work and run it

This happens without any interaction with the OS

3. When the work is done the hidden CPUs wait
(using Ring 3 MWAIT) while the application
gets the results

API supports synchronous and asynchronous calls

IXPUG Annual Fall Conference 2017 7

1. Application
provides
computation
kernel to
runtime

Host

Userspace

7

Driver
Kernelspace

Host
Kernelspace

2. Computation
kernel is run on
the hidden CPUs.

Driver

Userspace

Runtime API example

8

#include "rt.h"

/* Run on hidden CPU */

void fun(void *param)

{

int *d = (int*)param;

while (*d--);

}

int main()

{

int loops = 100;

struct rt_ctx *ctx;

struct rt_work work = {fun, &loops};

if (ctx = rt_init()) {

/* synchronous offload */

rt_run(ctx, &loops);

/* loops equals 0 at this point */

rt_exit(ctx);

}

}

IXPUG Annual Fall Conference 2017

initialization

execution

shutdown

Performance - setup

Hardware:
• Intel® Xeon Phi™ Processor 7250, 68 cores @ 1.4GHz, 16 GB MCDRAM Flat/Quadrant
• 6 x 32 GB DDR4
• First 4 cores (16 CPUs) visible to OS
• Remaining CPUs are hidden

Software:
• RedHat* 7.3 + 4.11 kernel

• Configured with 7800 MCDRAM hugepages
• Intel® Composer XE 2017.4.056

Benchmarks:
• The STREAM Benchmark used as reference
• Modified STREAM using hugepages and __assume_aligned(64) compiler hint
• Runtime compiled to run on host CPUs and compiled to run on hidden CPUs
• Common problem size - 1.4 GiB
• All measurements on 4-67 CPUs

IXPUG Annual Fall Conference 2017 9

Performance - STREAM

IXPUG Annual Fall Conference 2017 10

Measurement Result [%]

Reference 100

Experiment 1 100

Experiment 2 106

Experiment 3 107

Experiment 4 107.5

Reference experiment :
• STREAM Benchmark using OpenMP
• nohz_full=1-271
Experiment 1:
• STREAM using OpenMP
• nohz_full=1-271 isolcpus=1-271
Experiment 2:
• Modified STREAM using OpenMP
• nohz_full=1-271 isolcpus=1-271
Experiment 3:
• Modified STREAM using runtime compiled to run on host
• nohz_full=1-271 isolcpus=1-271
Experiment 4:
• Modified STREAM using runtime compiled to use hidden CPUs
• nohz_full=1-271 isolcpus=1-271 Performance gain with

additional OS noise reduction

Performance stability

IXPUG Annual Fall Conference 2017 11

100000

110000

120000

130000

140000

150000

160000

1 2 3 4 5 6 7 8 9 10

Ti
m

e
o

f
ru

n
 [

u
s]

Run

Single-threaded Triad comparison
reference/isolated CPUs

isolated reference

100000

101000

102000

103000

104000

105000

1 2 3 4 5 6 7 8 9 10

Ti
m

e
o

f
ru

n
 [

u
s]

Run

Single-threaded Triad comparison
hidden/isolated CPUs

hidden isolated

We ran the STREAM Triad kernel and measured time
required to process 1.4 GiB using single CPU
• Hidden CPU
• Isolated CPU (nohz_full isolcpus)
• Reference OS CPU (no modifier)
On the hidden CPU the difference between fastest and
slowest execution was 55 us, while for isolated and
reference CPU it was 474 us and 45522 us. 100000

105000

110000

115000

120000

2 3 4 5 6 7 8 9 10

Ti
m

e
o

f
ru

n
 [

u
s]

Run

Single-threaded Triad comparison

hidden isolated reference

Current Limitations

• The hidden CPUs cannot handle page faults.
Memory used by the computation kernel must be backed by physical
pages before running it and it can’t change during the run.

• System calls cannot be called from the computation kernel

• It is required to use custom synchronization between host and driver

IXPUG Annual Fall Conference 2017 12

Conclusions and Insights

It works
• The solution is stable
• x86_64 only
• It performs quite well, but there is still place for further

optimizations

Place for improvements
• Improve scalability
• Tackle the limitations from the previous slide
• Benchmark more complex workloads

IXPUG Annual Fall Conference 2017 13

Thank you

The Team:

• Łukasz Odzioba lukasz.odzioba@intel.com

• Łukasz Daniluk lukasz.daniluk@intel.com

• Paweł Karczewski pawel.karczewski@intel.com

• Jarosław Kogut jaroslaw.kogut@intel.com

• Krzysztor Góreczny krzysztof.goreczny@intel.com

IXPUG Annual Fall Conference 2017 14

mailto:lukasz.odzioba@intel.com
mailto:lukasz.daniluk@intel.com
mailto:pawel.karczewski@intel.com
mailto:jaroslaw.kogut@intel.com
mailto:krzysztof.goreczny@intel.com

Legal Disclaimer & Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations
and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel

microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the

availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent

optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are

reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific

instruction sets covered by this notice.

Notice revision #20110804

15
IXPUG Annual Fall Conference 2017 15

