
PRESENTED BY:

ICAT: Using an Interactive Tool to Adapt
Codes to KNL

IXPUG Fall Meeting 2017
Wednesday, September 27th

9/25/17 1

Lars Koesterke

Email: lars@tacc.utexas.edu

Ritu Arora

Email: rauta@tacc.utexas.edu

Goals

We	want	to	teach	HPC	concepts	without	the	burden	of		
teaching	syntax	first	

9/25/17 2

Tools	for	(semi)automa?c	code	modifica?on	allow	for	this	approach	
	

1.  Quick	introduc?on	to	the	topic	
2.  Presenta?on	of	example	code	
3.  Semi-automa?c	code	modifica?on	(with	our	tool)	
4.  Exploring	modified	code	

1.  Running	modified	code	to	assess	benefits	(usually	speed-up)	
2.  Inspect	modified	code	

5.  Learn	syntax	elements	from	modified	code	

Teaching with IPT and ICAT
IPT:	OpenMP	

First	example	

•  Spawning	threads:	parallel	region	

•  Parallel	execu?on:	work-sharing	
•  Race	condi?on:	private	variables	

•  Race	condi?on:	reduc?on	variables	
Second	example	

•  Race	condi?on:	Write-aRer-read	
(WAR)	conflict	

•  Resolu?on	through	code	
modifica?on	

	

Students	are	exposed	to	concepts	
Syntax	is	important,	but	is	beVer	
learned	later	from	a	book;	no	?me	
‘wasted’	in	class	 9/25/17 3

ICAT:	High-Bandwith	Memory	
Goal	

•  Conver?ng	a	‘malloc’	or	allocate’	into	
an	HM	memory	alloca?on	

•  Including	a	decision	tree	

Example	
•  Write-aRer-read	(WAR)	conflict	

•  Resolu?on	through	code	modifica?on	
	

Students	are	exposed	to	concepts	

Syntax	is	important,	but	is	beVer	learned	
later	from	a	book;	no	?me	‘wasted’	in	class	

Common Questions

Related to Innovative Hardware and Supporting Software Stack
1.  How can I adapt my application to take advantage of the manycore

processors and multiple levels of memory hierarchies?
2.  Which is the best memory mode for running an application on a KNL

processor?
3.  What are the band-width critical portions of an application data?
4.  Which cluster mode is the best for running an application on a KNL

processor?
5.  How much effort is required to analyze and adapt an application for the

KNL processors?

9/25/17 4

HPC is Constantly Evolving
The complexity in architecture is increasing. We highlight 2
trends here:
1.  More cores, with more threads (Hyperthreads)

•  Pure MPI is not enough. Threads are needed to
1.  Make use of the Hyperthreads
2.  Reduce MPI tasks and MPI communication
3.  Allow for more memory per MPI tasks

2.  Knights Landing (KNL) with additional memory layers
•  High-bandwidth memory (MCDRAM)
•  May need additional memory management in code

The users are forced to constantly adapt their code. We are
developing tools to help users to:
1.  Parallelize code with MPI and OpenMP

•  MPI and OpenMP for new users
•  Upgrade to a hybrid setup (MPI + OpenMP)
•  Memory management; Compile and run code optimally (KNL-specific)

9/25/17 5

Stampede 2
Phase 1: 4200 KNL nodes

68 cores
Up to 272 Hyperthreads
96 GB DDR4 memory
16 GB MCDRAM
Most in Cache Mode (tag directories in quadrants)
Some in Flat Mode (tag directories in quadrants)
Special queues for other configurations

Phase 2: Skylake dual-socket nodes
 40+ cores
 80+ Hyperthreads

Fast interconnect (Fat-tree)
Fast file systems 6

We	are	in	‘Phase	1’	
The	KNL’s	will	provide	more	
than	50%	of	the	available	

SUs	

Memory Hierarchy and Modes
•  Two main memory types

•  DDR4
•  MCDRAM

•  Three memory modes
•  Cache
•  Flat
•  Hybrid

•  Hybrid mode
•  Three choices
•  25% / 50% / 75%
•  4GB / 8 GB / 12GB

9/25/17 7

CPU	
MCDRAM	
(CACHE)	 DDR4	

CACHE	MODE	

CPU	
MCDRAM	

DDR4	

FLAT	MODE	

CPU	 MCDRAM	
(CACHE)	

MCDRAM	

DDR4	

HYBRID	MODE	

Memory Modes

Memory	footprint	 Flat	 Cache	

<	16GB	 Op?mal	 Couple	of	percent	lower	

>16	GB:	many	arrays	 May	work	well.	May	require	
code	modifica?ons	(user	
iden?fies	which	arrays	to	
store	in	MCDRAM)	

May	work	well	

>16	GB:	few	large	arrays	 Does	not	work,	if	no	array	
fits	in	the	MCDRAM	

May	work	well	

8

Using	the	‘Flat’	mode	may	require	code	modifica?ons	

Cluster Modes
•  Each tile tracks an assigned range of memory addresses on behalf

of all cores by maintaining a data structure called tag directory
•  To maintain cache-coherency, tile-to-tile, and tile-to-memory

communication is required
•  Cores that read or modify data must communicate with the tiles that

manage the memory associated with that data
•  Similarly, when cores need data from main memory, the tile(s) that

manage the associated addresses will communicate with the
memory controllers on behalf of those cores

•  The KNL can do this in the multiple cluster modes: all-to-all,
quadrant, and sub-NUMA-4 (or 2)

More information on clustering modes: https://portal.tacc.utexas.edu/user-guides/
stampede#cluster-modes

9/25/17 9

Why are Tools helpful?
How we all cope with new HPC concepts

1.  Concept of parallel execution or memory management
2.  Specific parallel paradigm:

1.  Shared vs. distributed memory - OpenMP vs. MPI
2.  When to manually modify the code for optimal memory placement

3.  Syntax, and good coding practices
4.  Actual code modifications

Our tools help with syntax and the actual code modifications

1.  Select OpenMP or MPI and a simple toy code
2.  Modify the code interactively
3.  Test the modified code
4.  Inspect code to learn syntax and good coding practices

9/25/17 10

General Philosophy

We provide a tool and a variety of simple code examples
Alternatively the user may provide code

Profiling of code
 Vtune and/or perf
 à list of routines, list of memory objects, etc.

Interaction with user
 Identify what (parallelization, vectorization, or memory management),
 where (routines, loops, allocation calls)

Code modification using bash scripts and ROSE source-to-source compiler
Final code ready for compilation, testing, and inspection.
Extra for KNL: Recommendation for configuration modes

9/25/17 11

Code Adaptation Using ICAT (1)

Directing array allocation towards MCDRAM

Interactive tool
Works with example code or user code

Example shown in C and Fortran

Tool identifies statements like these:

12

real(8), dimension(:,:), allocatable, :: x
…
allocate (x(n,m))

double *x;
…
x = (double*)malloc(sizeof(double)*n*m)

Tool Development
One example shown here

Modified code, pseudo code shown:

13

 size_gb = 8 * n * m / (1024*1024*1024)

 if (size_gb <= size_of_mcdram & mcdram_is_available)
Fortran:
!DEC$ ATTRIBUTES FASTMEM :: x
 allocate (x(n,m)) or
C:
 x = (double*)hbw_malloc(sizeof(double)*n*m
 if (fail)
 ‘normal allocate or malloc’ (Reason: failure)
 fi
 else
 ‘normal allocate or malloc’ (Reason: size or availability)
 fi

•  Users	can	easily	test	without	‘knowing’	all	the	syntax	
•  Modified	code	ready	for	‘cut-and-paste’	

Interactive Code Adaptation Tool (ICAT) -
Overview

9/25/17 14

•  Command-line	tool	that	helps	
in	decision-making,	and	code	
moderniza?on	and	migra?on	

•  Runs	the	code,	collects	
hardware	counter	data,	
determines	some	
characteris?cs	of	
applica?ons’	(e.g.,	L1	cache	
misses)	

•  Presents	reports	and	if	needed,	
modifies	source	code		

ICAT in Action (1): Launching ICAT

9/25/17 15

ICAT Future Work
•  Adding support for advanced vectorization

•  For situations in which the static-code analysis for
vectorization opportunities is inconclusive. Users may add
extra hints to support explicit vectorization.
•  #pragma novector, #pragma ivdep

•  Supporting memory optimization
•  Improve memory alignment, scalar-to-vector conversions
•  Loop-tiling, array-of-structure versus structure-of-arrays,

recalculating versus accessing from memory

•  Conversion: AoS to SoA

9/27/17 16

Thank You!

Ritu Arora
Lars Koesterke

We are grateful for the support received through:
•  NSF Grant # 1642396
•  NSF Grant # 1359304
•  TACC STAR Scholars program
•  Extreme Science and Engineering Discovery Environment

(XSEDE) - NSF grant # ACI-105357

9/27/17 17

