MVAPICH

MPI, PGAS and Hybrid MPI+PGAS Library

)

Advancing MPI Libraries to the Many-core Era:
Designs and Evaluations with MVAPICH2

IXPUG ’17 Presentation

S. Chakraborty, M. Bayatpour, H. Subramoni and DK Panda
The Ohio State University
E-mail: {Chakraborty.52,Bayatpour.1,Subramoni.1,panda.2}@osu.edu

Parallel Programming Models Overview

P1 P2 P3 PL €> p2 <> p3 PL <> P2 <> P3
v v v v \’ v S 2L
Loéi r'lorv
Shared Memory Memory Memory Memory Memory I | Memory | | Memory
| |
1 1
Shared Memory Model Distributed Memory Model Partitioned Global Address Space (PGAS)
SHMEM, DSM MPI (Message Passing Interface) Global Arrays, UPC, Chapel, X10, CAF, ...

e Programming models provide abstract machine models
e Models can be mapped on different types of systems
— e.g. Distributed Shared Memory (DSM), MPI within a node, etc.
e PGAS models and Hybrid MPI+PGAS models are gradually receiving

importance

Network Based Computing Laboratory IXPUG ‘17

Supporting Programming Models for Multi-Petaflop and
Exaflop Systems: Challenges

. . «)
Application Kernels/Applications
. Co-Design
Middleware Opportunities
] and
Programming Models Challenges
MPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenMP, across Various
OpenACC, Cilk, Hadoop (MapReduce), Spark (RDD, DAG), etc. Layers
Communication Library or Runtime for Programming Models Performance
Point-to-point Energy- Synchronizati .1
Resilience
Networking Technologies Multi-/Many-core Accelerators
Architectures (GPU and FPGA) (U J
Network Based Computing Laboratory IXPUG ‘17 3

Designing (MPI+X) for Exascale

e Scalability for million to billion processors
— Support for highly-efficient inter-node and intra-node communication (both two-sided and one-sided)

e Scalable Collective communication
— Offloaded
— Non-blocking
— Topology-aware

e Balancing intra-node and inter-node communication for next generation multi-/many-core
(128-1024 cores/node)

— Multiple end-points per node

e Support for efficient multi-threading
e Integrated Support for GPGPUs and FPGAs
e Fault-tolerance/resiliency
e QoS support for communication and 1/0
e Support for Hybrid MPI+PGAS programming

e MPI+ OpenMP, MPI + UPC, MPI + OpenSHMEM, CAF, MPI + UPC++...
e Virtualization
e Energy-Awareness

Network Based Computing Laboratory IXPUG ‘17

Overview of the MVAPICH2 Project

. High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
— MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002
- MVAPICH2-X (MPI + PGAS), Available since 2011
— Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
— Support for Virtualization (MVAPICH2-Virt), Available since 2015
— Support for Energy-Awareness (MVAPICH2-EA), Available since 2015 A
— Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

— Used by more than 2,825 organizations in 85 countries

— More than 427,000 (> 0.4 million) downloads from the OSU site directly

— Empowering many TOP500 clusters (June ‘17 ranking)

o 1st, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China

. 15th, 241,108-core (Pleiades) at NASA
3 20th, 462,462-core (Stampede) at TACC
. 44th, 74,520-core (Tsubame 2.5) at Tokyo Institute of Technology

— Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

— http://mvapich.cse.ohio-state.edu
o Empowering Top500 systems for over a decade
— System-X from Virginia Tech (3" in Nov 2003, 2,200 processors, 12.25 TFlops) ->

— Sunway TaihulLight (1t in Jun’17, 10M cores, 100 PFlops)

Network Based Computing Laboratory IXPUG ‘17 5

MVAPICH Project Timeline

i

| MVAPICH2-Virt

| MVAPICH2-MIC

MVAPICH2-GDR

V VNV

MVAPICH2-X
| MVAPICH2
| OMB
— EOL
= >

3 S ° ; T8 ger

+ < > < > o) L Ll c'na

0 O [] []

o] S 2 S Timeline 2 3 < A3

Network Based Computing Laboratory

IXPUG ‘17 6

MVAPICH2 Release Timeline and Downloads

450000

o
F Y _\|

0°¢!
q0°¢

400000

350000

o
o
o
o
o
o™

250000
200000
150000

speojumo(j0 JaquinN

100000

50000

Network Based Computing Laboratory

Architecture of MVAPICH2 Software Family

High Performance Parallel Programming Models

Message Passing Interface

PGAS Hybrid --- MPI + X

(MPI) (UPC, OpenSHMEM, CAF, UPC++) (MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime

Point-to-
point
Primitives

Collectives Energy-

Algorithms CDBLIETD

Awareness

Remote
Memory
Access

Diverse APIs and Mechanisms

Fault
Tolerance

1/0 and
File Systems

Active Introspection

Virtualization Messages & Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPower, Xeon-Phi (MIC, KNL), NVIDIA GPGPU)

Network Based Computing Laboratory

Transport Protocols Modern Features Transport Mechanisms Modern Features
SR- Multi Shared g S .
RC XRC ub DC UMR obpP : CMA IVSHMEM MCDRAM NVLink CAPI
[0}V Rail Memory
* Upcoming

IXPUG ‘17

MVAPICH2 Software Family

High-Performance Parallel Programming Libraries

MVAPICH2

Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE

MVAPICH2-X

Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and MPI
+PGAS programming models with unified communication runtime

MVAPICH2-GDR

Optimized MPI for clusters with NVIDIA GPUs

MVAPICH2-Virt

High-performance and scalable MPI for hypervisor and container based HPC cloud

MVAPICH2-EA

Energy aware and High-performance MPI

MVAPICH2-MIC

Optimized MPI for clusters with Intel KNC

Microbenchmarks

OMB

Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++)
libraries for CPUs and GPUs

Tools

OSU INAM Network monitoring, profiling, and analysis for clusters with MPI and scheduler
integration

OEMT Utility to measure the energy consumption of MPI applications

Network Based Computing Laboratory

IXPUG ‘17

MVAPICH2 2.3b
e Released on 08/10/2017

e Major Features and Enhancements
— Based on MPICH-3.2
— Enhance performance of point-to-point operations for CH3-Gen2 (InfiniBand), CH3-PSM, and CH3-PSM2 (Omni-Path)

channels
- Improve performance for MPI-3 RMA operations
— Introduce support for Cavium ARM (ThunderX) systems
— Improve support for process to core mapping on many-core systems
e New environment variable MV2_THREADS_BINDING_POLICY for multi-threaded MPIl and MPI+OpenMP applications
e Support ‘linear' and ‘compact' placement of threads
e Warn user if over-subscription of core is detected
- Improve launch time for large-scale jobs with mpirun_rsh
— Add support for non-blocking Allreduce using Mellanox SHARP
— Efficient support for different Intel Knight's Landing (KNL) models
— Improve performance for Intra- and Inter-node communication for OpenPOWER architecture
— Improve support for large processes per node and huge pages on SMP systems
- Enhance collective tuning for many architectures/systems

- Enhance support for MPI_T PVARs and CVARs

Network Based Computing Laboratory IXPUG ‘17 10

Overview of A Few Challenges being Addressed by the MVAPICH2
Project for Many-core Era

e Dynamic and Adaptive Communication Protocols and Tag Matching
e Contention-aware Designs for Intra-node Collectives

e Scalable Multi-leader Designs for Collectives

e Kernel-Assisted Communication Designs for KNL

e Efficient RMA-based Designs for Graph500 on KNL

Network Based Computing Laboratory IXPUG ‘17 11

Towards High Performance and Scalable Startup at Exascale

4 e Near-constant MPIl and OpenSHMEM

2 > O. M]Q O . On-demand initialization time at any process count
- € o . .
A 2 Connection e 10x and 30x improvement in startup time
B g O PMIX_Ring of MPI and OpenSHMEM respectively at
% = P| PGAS - State of the art O PMIX_lIbarrier 16,384 processes
x £

5 :
g s Ml MPI = state of the art O PMIX_lallgather ~® Memory consumption reduced for
€5 O remote endpoint information by
> 0| PGAS/MPI— Optimized 0 Shmem based PMI O(processes per node)

Job Startup Performance e 1GB Memory saved per node with 1M

processes and 16 processes per node

O On-demand Connection Management for OpenSHMEM and OpenSHMEM+MPI. S. Chakraborty, H. Subramoni, J. Perkins, A. A. Awan, and D K
Panda, 20th International Workshop on High-level Parallel Programming Models and Supportive Environments (HIPS ’15)

O PMI Extensions for Scalable MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, J. Perkins, M. Arnold, and D K Panda, Proceedings of the 21st
European MPI Users' Group Meeting (EuroMPI/Asia '14)

OO Non-blocking PMI Extensions for Fast MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, A. Venkatesh, J. Perkins, and D K Panda, 15th IEEE/
ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’15)

O SHMEMPMI - Shared Memory based PMI for Improved Performance and Scalability. S. Chakraborty, H. Subramoni, J. Perkins, and D K Panda, 16th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid '16)

Network Based Computing Laboratory IXPUG ‘17 12

Process Management Interface (PMI) over Shared Memory (SHMEMPMI)

e SHMEMPMI allows MPI processes to directly read remote endpoint (EP) information from the process
manager through shared memory segments

e Only asingle copy per node - O(processes per node) reduction in memory usage

e Estimated savings of 1GB per node with 1 million processes and 16 processes per node
e Upto 1,000 times faster PMI Gets compared to default design

e Available since MVAPICH2 2.2rc1

Time Taken by one PMI_Get Memory Usage for Remote EP Information
fg 300 =8 Default glgggg =—&=—Fence - Default Ji
§ 250 e 100 Allgather - Default v‘,"v 116X
% 200 SHMEMPMI 3 10 =#=Fence - Shmem o~
= P Z ——Allgather - Shmem a=""
g 150 <)) 1 A
— o o A’A’
§ 100 S & 000'1 —
© 3 ’ .
o 30 I} > 0.001 Actual «—Estimated,
E 0 * * * A 90.0001
= s S RIS NK¥SEEIEES S
1 2 4 8 16 32 s a8 5 Ca I ¥ LY =
Number of Processes per Node Number of Processes per Job™ ~ '?

Network Based Computing Laboratory IXPUG ‘17 13

Startup Performance on KNL + Omni-Path

MPI_Init - TACC Stampede2-KNL MPI_Init & Hello World - Oakforest-PACS

200 __25
—_ [%2]
é 150 =>&Intel MPI 2018 beta 'g 20 Hello World (MVAPICH2-2.3a)
S ~~MVAPICH2 2.3a 8.8x | &, | ~*MPLinit (MVAPICH2-2.3a)
< 100 c
< < 10

|
T 50 o
= £

0 T 0

00 O N ¥ ¥ ¥ Y Y ¥
N N o =+ N < 00 O N
— N un — ™M

Number of Processes

N ¥ Y ¥ ¥ X
- = N < 00 O
N -

Number of Processes

#
(\o)

128
256

64K
128K
181K
232K
32K
64K

21s

5.8s

* MPI_Init takes 51 seconds on 231,956 processes on 3,624 KNL nodes (Stampede2 — Full scale)

* 8.8 times faster than Intel MPI at 128K processes (Courtesy: TACC)

* At 64K processes, MPI_Init and Hello World takes 5.8s and 21s respectively (Oakforest-PACS)

* All numbers reported with 64 processes per node

New designs available in MVAPICH2-2.3a and as patch for SLURM-15.08.8 and SLURM-16.05.1

Network Based Computing Laboratory IXPUG ‘17

14

Overview of A Few Challenges being Addressed by the MVAPICH2
Project for Many-core Era

e Contention-aware Designs for Intra-node Collectives
e Scalable Multi-leader Designs for Collectives

e Kernel-Assisted Communication Designs for KNL

e Efficient RMA-based Designs for Graph500 on KNL

Network Based Computing Laboratory IXPUG ‘17 15

Dynamic and Adaptive MPI Point-to-point Communication Protocols

Desired Eager Threshold Eager Threshold for Example Communication Pattern with Different Designs

ST e S e et
B 128 KB B

0-4 32 -

E— 9 9559 9
EE=RNNNEEERTNE

3-7 32
O Process on Node 1 O Process on Node 2
Default Poor overlap; Low memory requirement Low Performance; High Productivity
Manually Tuned Good overlap; High memory requirement High Performance; Low Productivity
Dynamic + Adaptive Good overlap; Optimal memory requirement High Performance; High Productivity
600 Execution Time of Amber 10 Relative Memory Consumption of Amber
3 >
5 S 5
S 400 §<
Rz > E .
(] v S
E 200 £ &
2 £ 3
3 &
S o 0
IS 128 256 512 1K 128 256 512 1K
= Number of Processes Number of Processes
B Default OThreshold=17K B Threshold=64K B Default EIThresh?Id=17K B Threshold=64K
OThreshold=128K B Dynamic Threshold OThreshold=128K @ Dynamic Threshold

H. Subramoni, S. Chakraborty, D. K. Panda, Designing Dynamic & Adaptive MPI Point-to-Point Communication Protocols for Efficient Overlap of Computation & Communication, ISC'17 - Best Paper
Network Based Computing Laboratory IXPUG ‘17 16

Dynamic and Adaptive Tag Matching

r . . o N\ : . N\
CIQJD Tag matching is a significant C A new tag matching design ¥ Better performance than
c overhead for receivers _8 - Dynamically adapt to S other state-of-the art tag-
7 i
2 Existing Solutions are % communication patterns g matching schemes
m . .
£ - Static and do not adapt U - Use different strategies for Mmlmum.memory
O dynamically to different ranks e LI
ST LRI PRI - Decisions are based on the
- Do not consider memory number of request object
overhead Lh?tt muhs.t Ige traver:sed Will be available in future
> efore hitting on the > MVAPICH2 releases
required one
. y, L J

Bin-base
mn—,abaed
Adaptive

Memory Overhead (KB)
O = N WA OO N W

o s D ® = ivh > o

Normalized Tag Matching Time

Normalized Total Tag Matching Time at 512 Processes Normalized Memory Overhead per Process at 512 Processes
Normalized to Default (Lower is Better) Compared to Default (Lower is Better)

Adaptive and Dynamic Design for MPI Tag Matching; M. Bayatpour, H. Subramoni, S. Chakraborty, and D. K. Panda; IEEE Cluster 2016. [Best Paper Nominee]
Network Based Computing Laboratory IXPUG ‘17 17

Overview of A Few Challenges being Addressed by the MVAPICH2
Project for Many-core Era

e Scalable Multi-leader Designs for Collectives
e Kernel-Assisted Communication Designs for KNL
e Efficient RMA-based Designs for Graph500 on KNL

Network Based Computing Laboratory IXPUG ‘17 18

Different Kernel-Assisted Single Copy Mechanisms

CMA KNEM LiMiC

Cookie/Region Creation Not Required Required Required
Permission Check Supported Supported Not Supported
Availability Included in Linux 3.2+ Kernel Module Kernel Module

MPI Library Support

CMA KNEM LiMiC
MVAPICH2-2.3a \4 X \4
OpenMPI1 2.1.0 V V X
Intel MPI 2017 \4 X X

CMA (Cross Memory Attach) is the most widely supported kernel-assisted
transfer mechanism

Network Based Computing Laboratory IXPUG ‘17)

Impact of Communication Pattern on CMA Performance

1000000 1000000 1000000)
Different Processes Same Process, Same Buffer Same Process, Diff Buffers
100000 100000 100000
= —=PPN-2
i 10000 PPN-4 10000 10000
€ 1000 PPN-8 7| 1000 77| 1000
& —e—PPN-16 o > 100x
100 / 100 > 100x 100
. worse worse
10 P No increase 10 10 W’\/
- P with PPN ~e——
1 1 1
1K 4K 16K 64K 256K 1M 4M 1K 4K 16K 64K 256K 1M 4M 1K 4K 16K 64K 256K 1M 4M
Message Size Message Size Message Size
All-to-All = Good Scalability One-to-All - Poor Scalability One-to-All — Poor Scalability
PO Contention is at PO
= \ Process level / a -\
e P'3 P1 P3
\ P1 P3
Ff/' b2 02
Network Based Computing Laboratory IXPUG ‘17 20

One-to-all Communication with CMA on Different Architectures

1000000
KNL, 68 Physical Cores
100000 | ek 16K
= —.—ZSGK
3 10000 ™ M
Z
§ 1000
S
100
10

1

1 2 4 8 16 32 64
Number of Processes per Node

1000000
100000
10000
1000
100

10

1

(

Broadwell, 2x14 Physical Cores
em— [K 16K
ey 64K @) 56K
1M 4M

-—/

> 40x

1Numbzer of Iglrocesges pe}' Node28

1000000
100000
10000
1000
100

10

1

e Super-linear degradation in all three architectures

* More Cores => More Contention => More Degradation

Power8, 2x10 Physical Cores

l— /] 16K

CoTT R P

M 4aM

—

Nu%"lber40f Processes per l&4 128

* Contention aware design: limit number of concurrent reads/writes
e Hit the “sweet spot” between contention and concurrency

Network Based Computing Laboratory

IXPUG ‘17

Performance Comparison of MPI_Scatter

1000000

Latency (us)

100000
10000
1000
100

10

1

Network Based Computing Laboratory

KNL (64 Processes)

=== MVAPICH2-2.3a
Intel MP1 2017
OpenMPI 2.1.0

==@==Proposed

=333

4
—

Y ¥ ¥
N < 0

16K
32K
64K
128K
256K
512K

Message Size

1000000
100000
10000
1000
100

10

1

Broadwell (28 Processes)

WV e \IVAPICH2-2.3a
Intel MPI 2017
OpenMPI 2.1.0

==@==Proposed

S RGHE I

Message Size

1000000
100000
10000
1000
100

10

1

Power8 (160 Processes)

~ 20x
better

e====MVAPICH2-2.3a

OpenMPI 2.1.0

=== Proposed
A4
N

4
<

Message Size

Up to 2x-5x improvement on KNL and Broadwell for medium to large messages

Up to 20x improvement on Power due to large process count

Significantly faster than Intel MPI and Open MPI for messages > 4KB

Similar improvements observed for MPI_Gather

S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI Collectives for Multi/Many-
core Systems, IEEE Cluster “17, BEST Paper Finalist

IXPUG ‘17

22

Performance Comparison of MPI_Bcast

100000 100000 100000
KNL (64 Processes) Broadwell (28 Processes) Power8 (160 Processes) b)
10000) 10000 >10000
3
> 1000 1000 1000
c
[0}
3 100(= MVVAPICH2-2.3a 100 e \\/APICH2-2.3a 100 (¢
3 Intel MPI 2017 10 < Intel MPI 2017 ====MVAPICH2-2.3a
10 Use OpenMPI 2.1.0 OpenMPI 2.1.0 10 Use OpenMP12.1.0
1 SHMEM =@==Proposed 1 ==@==Proposed 1 SHMEM === Proposed
1K 4K 16K 64K 256K 1M 4M AR N I OO 1K 4K 16K 64K 256K 1M 4M
. N O rf;) N .
Message Size Message Size Message Size

* Up to 2x - 4x improvement over existing implementation for 1MB messages
* Up to 1.5x — 2x faster than Intel MPIl and Open MPI for 1MB messages

* Improvements obtained for large messages only
* p-1 copies with CMA, p copies with Shared memory
* Fallback to SHMEM for small messages

Network Based Computing Laboratory IXPUG ‘17 23

Performance Comparison of MPI_Alltoall

1000000 () 1000000 dwell () 10000000
KNL (64 Processes Broadwell (28 Processes
100000 100000 >20% 1000000
= Better 100000
> 10000 10000
> 10000
S 1000 1000
& et VIVAPICH2-2.32 et MIVAPICH2-2.32 1000
100 Intel MP1 2017 100 Intel MPI1 2017 100 e \\/APICH2-2.3a
10 OpenMPI 2.1.0 10 OpenMPI 2.1.0 10 OpenMPI 2.1.0
==@==DProposed === Proposed === Proposed
1 1 1
1K 4K 16K 64K 256K 1M 4M 1K 4K 16K 64K 256K 1M 4M 1K 4K 16K 64K 256K 1M
Message Size Message Size Message Size

* Improvement from avoiding exchange of control messages
* Improvement observed even for 1KB messages

* Up to 3x-5x improvement for small and medium messages (compared to default)
* Large message performance bound by system bandwidth (5-20% improvement)
e Similar improvements for MPI_Allgather

Network Based Computing Laboratory IXPUG ‘17 24

Overview of A Few Challenges being Addressed by the MVAPICH2
Project for Many-core Era

e Kernel-Assisted Communication Designs for KNL
e Efficient RMA-based Designs for Graph500 on KNL

Network Based Computing Laboratory IXPUG ‘17 25

Scalable Reduction Collectives with Multi-Leaders

e Existing designs for MPI_Allreduce do not take advantage of the
vast parallelism available in modern multi-/many-core
processors

e Proposed a new solution for MPI_Allreduce

e DPML Take advantage of the parallelism offered by
— Multi-/many-core architectures

— The high throughput and high-end features offered by InfiniBand and
Omni-Path

M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda, Scalable Reduction Collectives with Data Partitioning-based
Multi-Leader Design, SuperComputing '17.

Network Based Computing Laboratory IXPUG ‘17

Performance of MPI_Allreduce On Stampede2 (1,024 processes)*

350 1800
1600
300
1400
250
- 1200
=
5‘200 1000
C
3 150 800 ax
8 600
100
400
50 _I I I 200
0 0
128 256 512 1024 2048 4096 8K 128K 256K

Message Size Message Size

B VIVAPICH2 MVAPICH2-OPT IMPI B MVAPICH2 MVAPICH2-OPT IMPI
OSU Micro Benchmark with 32 PPN**

e For MPI_Allreduce latency with 8K bytes, MVAPICH2-OPT can reduce the latency by
4X

*In all our evaluations, Intel MPI1 2017.1.132 and MVAPICH2 2.2 have been used

**¥p

Network Based Computlng Laboratory IXPUG ‘17

Performance of MPI_Allreduce On Stampede2 (10,240 Processes)

300 2000

1800

250 1600

— 200 1400

= 1200
>

2 150 1000

= 800
©

— 100 600

50 400

200

0 0

16 32 64 128 256 512 10242048 4096 128K 256K
Message Size Message Size
B MVAPICH2 MVAPICH2-OPT IMPI B MVAPICH2 MVAPICH2-OPT IMPI

OSU Micro Benchmark 64 PPN

e For MPI_Allreduce latency with 32K bytes, MVAPICH2-OPT can reduce the latency
by 2.4X

Network Based Computing Laboratory IXPUG ‘17 28

Performance of MPI_Allreduce On Bridges (1,024 Processes)

140 600
2.6X
120 500
100
> 400
=
> 80
2 300
% 60
— 2
40 00
2°J||||||| II
: : J
64 128 256 512 1024 2048 4096 128K 256K
Message Size Message Size
B MVAPICH2 MVAPICH2-OPT IMPI B MVAPICH2 MVAPICH2-OPT IMPI

OSU Micro Benchmark with 16 PPN

e For MPI_Allreduce latency with 2K bytes, MVAPICH2-OPT can reduce the latency by
2.6X

Network Based Computing Laboratory IXPUG ‘17 29

Performance of MPI_Allreduce On Bridges (1,792 Processes)

140 1400
120 L5XT 1 1200
100 1000
(%]
=
= 80 800
(S}
c
2 60 600
8
40 400
Al | L Lol] i I
0 o LB [I
64 128 256 512 1024 2048 4096 8K 16K 32 128K 256K

Message Size

Message Size
MVAPICH2-OPT IMPI

B VIVAPICH2 MVAPICH2-OPT IMPI H MVAPICH2
OSU Micro Benchmark with 28 PPN

For MPI_Allreduce latency with 4K bytes, MVAPICH2-OPT can reduce the latency by
1.5X

30

IXPUG ‘17

Network Based Computing Laboratory

Performance of MiniAMR Application On Stampede2 and Bridges

Stampede2 (32 PPN) Bridges (28 PPN)
70 80
© 2.6X o 1. 5X
.50 60
> 40 >0
c 40
i’; 30 30
20 20
10 10 I
0 0
1024 1280 2048 448 1792
Number of Processes Number of Processes
B MVAPICH2 MVAPICH2-OPT IMPI B MVAPICH2 MVAPICH2-OPT IMPI

e For MiniAMR Application latency with 2,048 processes, MVAPICH2-OPT can reduce
the latency by 2.6X on Stampede2

e On Bridges, with 1,792 processes, MVAPICH2-OPT can reduce the latency by 1.5X
Network Based Computing Laboratory IXPUG ‘17 31

Overview of A Few Challenges being Addressed by the MVAPICH2
Project for Many-core Era

e Efficient RMA-based Designs for Graph500 on KNL

Network Based Computing Laboratory IXPUG ‘17 32

Kernel-assisted Communication Designs for KNL

Proposed kernel-assisted on-loading communication engine for many-cores
with high bandwidth memories

— Exploits high concurrency and MCDRAM offered by KNL
Implemented as a Linux Kernel Module with MPI as a high-level runtime

Applicable to other programming models such as PGAS, Task-based etc.

Provides portability, performance, and applicability to runtime as well as
applications in a transparent manner

Low latency and high throughput
— Medium to large messages

— Optimized for Deep Learning workloads

J. Hashmi, K. Hamidouche, H. Subramoni, D. Panda, Kernel-assisted Communication Engine for MPI on Emerging Many-core Processors, Int’l
Conference on High-Performance Computing, Data, and Analytics (HiPC), Dec 2017.

Network Based Computing Laboratory

IXPUG ‘17 33

Microbenchmark Evaluation

osu_latency osu_bw
O,
20000 33% 10000 -@-MV2-CMA MV2-LiMIC
--MV2-CMA o ==|MPI2007-KASSIST -#~MV2-Proposed
o000 MV2-LiMIC 28000 .
o ——IMPI2007-KASSIST S 30"
= - MV2-Proposed = 6000 ”—’
s}
S 10000 5
- S 4000 o><«—~——0—'—’—‘—‘
+ o)
S -
©
5000 8 2000
0
0 64K 128K256K512K 1M 2M 4M 8M 16M 32M 64M

64K 128K256K512K 1M 2M 4M 8M 16M 32M 64M
Message Size Message Size

e Proposed design exploits KNL cores and MCRAM to accelerate large message transfers

e Two process latency is improved by up to 33% and bandwidth by 30%

Network Based Computing Laboratory IXPUG ‘17 34

Application Evaluations
120 ®m|MmPI2017 B MV2-CMA

B MV2-Default MV2-Proposed

_ MV2-LiMIC ® MV2-Proposed 15% 300
=100 °
v 250 12/o
£ 80
g 200
S 60 ©
: ()
§ £ 150
% 40 ~ 100
Ll

20 50

0 0

16x8 268 (4x68) 204 (4x51) 64 (4x16)
MPI x OpenI\/IP Total Cores (MPI Processes x OMP Threads)
HPCG weak-scaling execution time. [nx, ny, nz]=[104, CNTK: MLP Training Time using MNIST (Batch-size:64)

104,104]
e 15% improvement over Intel MPI 2017 for weak-scaling HPCG benchmark

e Proposed design improved MLP training time on CNTK framework by 12%

Network Based Computing Laboratory IXPUG ‘17 35

Overview of A Few Challenges being Addressed by the MVAPICH2
Project for Many-core Era

Network Based Computing Laboratory IXPUG ‘17 36

Multi-threading and Lock-Free MPI RMA Based Graph500 on KNL

e Propose multi-threading and lock-free designs in MPI
runtime as well as Graph500 to take advantage of
— Large number of CPU hardware threads

— High-Bandwidth Memory (HBM)

Network Based Computing Laboratory IXPUG ‘17 37

MPI Level One-sided Put Latency & Bandwidth

Put Latency

1000 o iipi 20000
3X Q
- 3% Mv2 & 15000
e —o—MV2-2T =
= 600 =
3 MV2-4T % 10000
9 400 2
S 2 5000
200 S
m
0 — 0
64K 128K 256K 512K 1M 2M 4M

Message Size (bytes)

Put Bandwidth

== |MPI
MV2
=0—=MV2-2T
MV2-4T
M
64K 128K 256K 512K 1M 2M 4M

Message Size (bytes)

e For Put latency with 4M bytes, MV2-4T can reduce the latency by 3X

Network Based Computing Laboratory

IXPUG ‘17

38

Graph500 BFS Kernel Performance Evaluation

Graph500 BFS Kernel Execution Time with 64 Processes on KNL
G500-S/R-DDR
G500-RMA-DDR
W G500-Opt-DDR
G500-S/R-HBM
G500-RMA-HBM

5 I 27% I I I W G500-Opt-HBM
3
i I i 11 B
MV?2

IMPI MV?2 IMPI

[ERN
Ul

[E
o

Execution Time (s)

IMPI MV2
Flat-Alltoall Flat-Quadrant Cache

e With Flat-Alltoall mode, G500-OPT-HBM scheme could reduce the kernel execution
time by 27% compared with the G500-OPT-DDR

Network Based Computing Laboratory IXPUG ‘17

Graph500 BFS Kernel Scale-Out Evaluation

Graph500 BFS Kernel Execution Time with 64 Processes on KNL

3
—_ G500-S/R
L5
v B G500-0OPT
E 2
[
€15
.g 17%
5 1 L 2
9
Q

0

IMPI IMPI IMPI MV2
256 512 1024

Number of Processes

With 1,024 processes, G500-OPT scheme can reduce the kernel execution time by
17% compared with the G500-S/R scheme

Network Based Computing Laboratory IXPUG ‘17

40

Concluding Remarks

e Many-core nodes will be the foundation blocks for emerging Exascale systems

e Communication mechanisms and runtimes need to be re-designed to take

advantage of the availability of large number of cores
e Presented a set of novel designs and demonstrated the performance benefits

e The new designs will be available in upcoming MVAPICH?2 libraries

Network Based Computing Laboratory IXPUG ‘17

Funding Acknowledgments

Funding Support by
= DﬁMENST?FISEI:G?e @ Mg!‘lﬁralgg Q LOGIC HE SUPERCOMPUTER CO
) Cisco SYSTEMS
I »
(intel) Finux SANVIDIA “ @Sun
NetApp microsystems
Equipment Support by
A ined U @Sun M)
ME]’:‘]&?Q}; AM D microsystems

P (anced custerin: - ZMiicroway <A NVIDIA. QEQO GC c

Network Based Computing Laboratory IXPUG ‘17 42

Personnel Acknowledgments

Current Students Current Research Scientists Current Research Specialist
-~ A Awan (Ph.D.) - S.Guganani (Ph.D.) - M.Rahman (Ph.D.) X —) Smith
— M. Bayatpour (Ph.D.) = J.Hashmi (Ph.D.) ~ D.Shankar (Ph.D.) — H.Subramoni - M. Arnold
- S.Chakraborthy (Ph.D.) — N.lIslam (Ph.D.) — A Venkatesh (Ph.D.)
o Chu (P — M.Li(PhD) — J.Zhang (Ph.D.) Current Post-doc

— A.Ruhela

Past Students Past Research Scientist
_ A. Augustine (M.S.) _ W. Huang (Ph.D.) - M. Luo (Ph.D.) - R. Rajachandrasekar (Ph.D.) _ K. Hamidouche
- P. Balaji (Ph.D.) - W.lJiang (M.S.) - A.Mamidala (Ph.D.) - G.Santhanaraman (Ph.D.) ~ ssur
— S.Bhagvat (M.S.) - J.Jose(Ph.D.) - G.Marsh (M.S.) - A.Singh (Ph.D.)
— A Bhat(M.S) — S.Kini(MS) - V.Meshram (M.5.) - J.Sridhar (M) Past Programmers
- D.Buntinas (Ph.D.) - M.Koop (Ph.D.) = A Moody (MS.) - S:Sur(Ph.D) - D.Bureddy
— L. Chai(Ph.D.) — K. Kulkarni (M.S.) - S.Naravula (Ph.D.) = H.Subramoni (Ph.D.) _ . Perkins
- B.Chandrasekharan (M.S.) = R.Kumar(M.S.) = R.Noronha (Ph.D.) - K Vaidyanathan (Ph.D.)
- N.Dandapanthula (M.S.) - S.Krishnamoorthy (M.S.) — X.Ouyang (Ph.D.) = AVishnu(Ph.D.)
- V.Dhanraj (M.S.) - K.Kandalla (Ph.D.) - S.Pai(MsS) - 1. Wu(Ph.D)
- T. Gangadharappa (M.S.) - P. Lai (M.S.) - S. Potluri (Ph.D.) - W. Yu (Ph.D.)
- K. Gopalakrishnan (M.S.) - J. Liu (Ph.D.)

Past Post-Docs
- D. Banerjee - J. Lin - S. Marcarelli
- X. Besseron - M. Luo - J. Vienne
_ H.-W. Jin - E. Mancini - H. Wang

Network Based Computing Laborat IXPUG ‘17 43

Thank You!

panda@cse.ohio-state.edu

&m\sed Co%
L 2

Laboratory

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

L X - :
|y @
=—~ MVAPICH o2 HIBD HIDL

$ MPI, PGAS and Hybrid MPI+PGAS Library High—Performance HIgh-Pef'fOl’manCG

Big Data Deep Learning
The High-Performance MPI/PGAS Project The High-Performance Big Data Project The High-Performance Deep Learning Project

http://mvapich.cse.ohio-state.edu/ http://hibd.cse.ohio-state.edu/ http://hidl.cse.ohio-state.edu/

Network Based Computing Laboratory IXPUG ‘17 44

