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§ 3624 nodes 
– Xeon Phi 7230 (2nd gen.) 
– 16 GB MCDRAM 
– 192 GB DDR4 
– 128 GB SSD 

§ Peak 9.65 petaFLOPS 
§ Cray Aries interconnect 
§ 10 PB Lustre parallel file system 

§ Theta dedicated for science runs: 
just ended 

§ 6 Tier 1 + 6 Tier 2 projects 
§ Optimize applications 
§ Solidify libraries & infrastructure 
§ Prep Theta for science on day one 

EARLY SCIENCE PROGRAM 
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THETA 

ALCF THETA SYSTEM & EARLY SCIENCE PROGRAM (ESP) 
Argonne Leadership Computing Facility 



ESP Timeline 
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Task	 CY2015	 CY2016	 CY2017	 CY2018	 CY2019	
Q1	 Q2	 Q3	 Q4	 Q1	 Q2	 Q3	 Q4	 Q1	 Q2	 Q3	 Q4	 Q1	 Q2	 Q3	 Q4	 Q1	 Q2	 Q4	 Q4	

Theta	CFP	

Theta	selec2on	

Theta	ESP	projects	

Theta	Early	Science	

Aurora	CFP	

Aurora	selec2on	

Aurora	ESP	projects	

Aurora	Early	
Science	

Mira	produc2on	

Theta	produc2on	

Aurora	produc2on	



THETA ESP PROJECTS 
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Tier 1 



THETA ESP PROJECTS 
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Code: CoreNeuron 
PI: Fabien Delalondre (EPFL) 
Many coupled, nonlinear ODEs 
Catalysts: Y.Alexeev, T. Williams 

Code: HSCD 
PI: Alexei Khokhlov (U. Chicago) 
DNS, reacting flows, patch AMR 
Catalyst: M. Garcia 

Code: SU2 
PI: Juan Alonso (Stanford U) 
Large Eddy Simulation, O(3-4) 
Catalyst: R. Balakrishnan 

Code: NAMD 
PI: Benoit Roux 
(U. Chicago, ANL) 
MD with replica methods 
Catalyst: W. Jiang 
Postdoc: B. Radak 

Codes: WEST & Qbox 
PI: Giulia Galli (U. Chicago) 
MBPT & ab initio MD 
Catalyst: C. Knight 
Postdoc: H. Zheng Code: HACC 

PI: Katrin Heitmann (ANL) 
N-body gravity + SPH hydro 
Catalysts: H. Finkel, A. Pope 
Postdoc: J.D. Emberson 

Tier 1 
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Code: PHASTA 
PI: Kenneth Jansen (U. Colorado) 
CFD, unstructured mesh 
Catalyst: Hal Finkel 

Code: GFMC 
PI: Steven Pieper (ANL) 
Greens Function Monte Carlo – nuclear 
Catalyst: James Osborn 

Codes: FHI-Aims & GAtor 
PI: Volker Blum (Duke U.) 
MBPT (DFT) & genetic algorithm 
Catalyst: Álvaro Vázquez-Mayagoitia 

Code: Nek5000 
PI: Christos Frouzakis (ETHZ) 
Spectral element CFD with combustion 
Catalyst: Scott Parker 

Codes: MILC & CPS 
PI: Paul Mackenzie (FNAL) 
Lattice QCD 
Catalyst: James Osborn 

Code: GAMESS 
PI: Mark Gordon (Iowa State U.) 
FMO - quantum chemistry 
Catalysts: Yuri Alexeev, Graham Fletcher 

THETA ESP PROJECTS Tier 2 



FREE ENERGY LANDSCAPES OF MEMBRANE TRANSPORT PROTEINS 

Science Impact 

§  An atomistic picture of membrane transport proteins is a critical 
component of our understanding of a broad range of biological functions. 
This work will utilize computational models to provide both detailed 
visualizations of large protein motions as well as quantitative predictions 
into the energetics of these processes. 

Numerical Methods/Algorithms 

§  Classical molecular dynamics simulations, including replica exchange 
and string methods with swarms of trajectories 

Parallelism 

§  Charm++, an overdecomposition-based message-driven parallel 
programming model. 

Application Development 

§  Implemented new hybrid algorithm combining Monte Carlo and MD 

§  Simulations should fit entirely within MCDRAM 

Tier 1 Theta ESP project 

Code: NAMD 
PI: Benoit Roux (U. Chicago, ANL) 
MBPT & ab initio MD 
Catalyst: Wei Jiang 
Postdoc: Brian Radak 

The Na/K pump (yellow) is a P-type ATPase that spans the plasma membrane of animal 
cells. It acts to maintain the ionic gradient (orange and blue spheres) that gives rise to the 
cell potential, a critical component of cell machinery and signal transduction. This project 
will develop new simulation models and methodologies to study the sensitivity of key, pH-
sensitive amino acid residues in the transmembrane region (red spheres) of the Na/K 
pump and other P-type ATPases, as well as related F/V-type ATPases. Brian Radak, 
University of Chicago; data courtesy of Huan Rui, University of Chicago 



Generic charm++ machine layer on Aries interconnect 
Efficient compiler generated vectorization for nonbond kernel by code restructuring 
3X speedup per core or 12X per node relative BG/Q 
Better strong scaling than Mira: 100M atom system strongly scale to whole Theta 
(16 racks on Mira) 
Developed constant PH MD algorithm with built-in Python interface that enables 
on-the-fly topology conversion of molecular system 
Free energy calculation with ensemble of constant PH MD trajectories scales to 
whole Theta  

NAMD Code optimization and algorithm design on Theta 



§  GAMESS	code	-	a	general	
purpose	quantum	chemistry	
package.	All	major	methods	
and	a	large	number	of	
proper2es	are	implemented	

§  One	of	the	most	popular	
quantum	chemistry	packages	
with	an	es2mated	user	base	of	
100,000+	users	worldwide	

§  Supported	by	INCITE,	ALCC,	
ESP,	ECP,	and	two	IPCCs	

§  A	parallel	Fortran	77/95	code,	
which	scales	up	to	750,000	
cores	using	FMO	method	

§  There	is	a	major	effort	
underway	to	rewrite	code	in	
Fortran	95,	OpenMP	threading	
of	major	methods,	and	
vectoriza2on	of	the	integral	
packages	
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MPI/OPENMP PARALLELIZATION OF GAMESS FOR THE SECOND GENERATION 
OF INTEL® XEON PHI PROCESSOR  
PI MARK GORDON (A COLLABORATION BETWEEN ANL, ISU, MSU, RSC, INTEL) 

§  Sped	up	HF	method	up	to	6	
2mes	

§  Reduced	memory	footprint	by	
up	to	200	2mes	

§  Scaled	up	the	code	to	3,000	KNL	
nodes	on	Theta	

§  Vectorized	the	Rys	integral	
package	resul2ng	in	up	2x	speed	
up	

§  Implemented	OpenMP	
paralleliza2on	in	SCF	driver	

§  Threaded	energy	and	gradient	
code	for	RHF,	UHF,	ROHF,	and	
HF-exchange	part	in	hybrid	DFT	

§  Results	were	published	in	SC17	
technical	paper,	IPDPSW	paper,	
the	Interna2onal	Journal	of	High	
Performance	Compu2ng	
Applica2ons	

§  Best	SC17	poster	nomina2on	

§  Yuri	Alexeev	(an	ALCF	
computa2onal	scien2st)	led	
efforts	for	OpenMP	threading	of	
GAMESS	

§  Yuri	Alexeev	helped	design	and	
implement	threaded	HF	code	in	a	
collabora2on	with	Vladimir	
Mironov	funded	by	IPCC	

§  All	benchmarks	were	ran	by	Yuri	
Alexeev	on	Theta	and	JLSE	

Publication: V. Mironov, Y. Alexeev, A. Moskovsky, K. Keipert, M. S. Gordon, M. Dmello, 
Proceedings of the 2017 International Conference for High Performance Computing and 
Communications (SC17), Denver, CO, USA, (2017) 

IMPACT AND APPROACH ACCOMPLISHMENTS ALCF CONTRIBUTIONS 



ARCHITECTURE OF QMCPACK ON CLUSTERS OF SMP 
QMCPACK utilizes OpenMP/CUDA to optimize memory usage and to take advantage of the growing 
number of cores per SMP node or stream multiprocessors per GPU. 
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§  Walkers within a MPI task is distributed among the 
cores in CPU or the SMs in GPU. 

§  Big common data is shared by all the walkers like 
wave function coefficients. 
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QMCPACK OPTIMIZATION STRATEGY 
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§  Intel IPCC Support 
§  What we learned (From Optimization on IBM BGQ): 

§  Straight forward application of QPX, SSE or Assembly brings 1.5~2x speedup  
§  Better algorithm + Structures of Array (SoA) doubles the performance due to better memory 

bandwidth 
§  Portable algorithm are possible but portable implementation is the challenge.  

§  What we do (Intel PCC / Exascale Computing Program) 
§  Move from Double Precision to Mixed Precision 
§  Move from Array of Structure (AoS) to SoA to AoSoA (Tiling) 
§  Using nested threading at the walker level to reduce the time to solution 
§  Rewrite completely Distance table function 
§  Generate a Micro-QMC (Miniapp) to experiment with algorithms within the constraints of 

QMCPACK 



QMCPACK - DOUBLE TO SINGLE PRECISION 

•  Small core counts: 20% faster 

on KNL, gained from computing. 

•  Full node: 55% faster, gained 

from both computing and 

memory BW. 

•  Always: about 70% faster on 

BG/Q, gained from memory BW. 

§ Gain performance not only on KNL but also on BG/Q. 
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PERFORMANCE SUMMARY 
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(Embracing a new era of highly efficient and productive quantum Monte Carlo simulations) A. Mathuriya, Y. Luo, A. Benali, L. Shulenburger, R. 
Clay, J. Kim, accepted:  Super Computing 17 
  
(Optimization and parallelization of B-spline based orbital evaluations in QMC on multi/many-core shared memory processors), A. Mathuriya, 
Y. Luo, A. Benali, L. Shulenburger, J. Kim, International Parallel & Distributed Processing Symposium (Proceedings) 2017 
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OVERALL THETA ESP LESSONS LEARNED 
§ Structure of Arrays 
§ Strong scale to fit in MCDRAM 

–  Successes with many MPI ranks per node (up to 64) 
§ Transition from BGQ (MPI + OpenMP) → KNL not generally painful 

–  Adjust ranks/threads sweet spot 
§ Memory access looks like streaming? 

–  #pragma vector nontemporal
§ Use MKL FFT (multiple electronic structure codes) 

14 



THETA ESP (AND OTHER) LESSONS LEARNED 
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Code Method Runtime flat vs. cache 

HACC Tree N-body, particle-mesh -0.1% 

WEST Many body perturbation theory +8.98% 

Qbox Ab initio molecular dynamics -6.6% 

USQCD Several Lattice QCD methods Virtually no difference 

NAMD Classical molecular dynamics No significant difference 

QMCPACK Quantum Monte Carlo -4.8% 

VSVB Electronic structure +4.2%, +0.59% 

§ Running within MCDRAM? Cache mode as good as flat mode 
–  Flat mode: numactl -m 1 (allocate in HBM; error if spills out) 



ALCF DATA SCIENCE PROGRAM (ADSP) OVERVIEW 
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¤  “Big Data” science problems that require the scale and performance of leadership computing resource 

¤  The new initiative, targeted at big data problems that require the scale and performance of leadership-class 
supercomputers, will enable new science and novel usage modalities on these systems. 

¤  Projects will cover a wide variety of application domains that span computational, experimental and 
observational sciences 

¤  Focus on data science techniques including but not limited to statistics, machine learning, deep learning, UQ, 
image processing, graph analytics, complex and interactive workflows 

¤  Two-year proposal period and will be renewed annually. Proposals will target science and software 
technology scaling for data science 

¤  Projects receive ALCF staff support in Data and Computational Science. Tier-1 projects will be supported in 
part with postdoctoral scholars. 

¤  Yearly call for proposal.  
Next deadline – Summer 2018 (Expected yearly call for proposals) 
https://www.alcf.anl.gov/alcf-data-science-program 



ADSP SYSTEM RESOURCES 
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¥  49,152 nodes 
¥  786,432 cores 
¥  786 TB RAM 
¥  10 PF 

 

¥  126 nodes (Haswell) 

¥  1512 cores 

¥  126 Tesla K80  

¥  48 TB RAM (3 TB GPU) 

Mira – IBM BG/Q Cooley - Cray/NVIDIA Theta- Cray/Intel  Sage- Cray Urika-GX  

¥  3240 nodes (KNL) 

¥  829,440 cores 

¥  50.6 TB MCDRAM 

¥  607.5 TB DDR4 RAM 

¥  414.7 TB SSD  

¥  32 nodes (Haswell) 

¥  8 TB DRAM 

¥  25.6 TB NVMe SSD 

¥  BigData Analytics 
Stack 

Over 180 PF peak performance 
> 50,000 nodes with 3rd Generation Intel® Xeon Phi™ 
processor codename Knights Hill, > 60 cores 
Over 7 PB total system memory 



ADSP CATEGORY: TIER-1 
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¤ PI: Prof. Jacqueline Cole, University of Cambridge, UK 

¤ Co-PI – Alvaro Vasquez, Argonne National Laboratory, USA 

¤ Objectives: Design of Dyne-sensitized cells (DSC), light- absorbing 
dye molecules needed to realize next- generation technology of 
solar- powered windows using large--scale data mining with 
machine learning.  

¤  Impact: DSC are prospected to power ‘smart windows’ - windows 
that generate electricity from sunlight. These are expect to be an 
key component of  buildings in future cities, in an entirely energy- 
sustainable fashion. 

Section 2: Project Summary 

2a. Executive Summary 

This project exploits large­scale data mining with machine learning to discover                     
better performing light­absorbing dye molecules that are desperately needed to                   
realize a next­generation technology of solar­powered windows, which are                 
prospected to power buildings in future cities, in an entirely energy­sustainable                     
fashion. The data source generation is a central part of the project whereby a                           
concerted set of experimental and computational data on the structures and                     
optical properties of 80,000 molecules are intelligently paired together. To this                     
end, a database autogeneration tool developed by Cole will be used to mine 80,000 experimentally­derived optical                               
spectra and their associate chemical structures from the literature. A vast array of complementary data on optical                                 
properties and quantum energy information can be obtained via corresponding DFT and TD­DFT calculations on                             
these 80,000 molecules, a task that necessitates the resources of Theta at the ALCF. Quality control of these                                   
calculations will be assured by the careful matching of UV/vis absorption profiles provided by experiment with those                                 
constructed by TD­DFT from optical oscillator strengths and lambda(max) values, which are subject to                           
benchmarking various basis sets, functionals and corrections against this matching procedure. With this data source                             
in hand, bearing unusually comprehensive and quality­assured information on electronic structure, quantum                       
energetics, and optical property attributes for all 80,000 molecules, algorithms developed by Cole that relate dye                               
structure to DSC device function will probe this cognate set of experimental and computational data using molecular                                 
engineering workflows. These workflows have also been developed by the PI, and are designed to synergize and                                 
optimize the relative use of experimental and computational data to achieve the 'best of both worlds' in terms of their                                       
information and quality content, with respect to the input required to process the algorithms that encode the DSC                                   
dye structure­function relationships. Probing the data with these algorithms affords an initial short­listing of dye                             
candidate molecules which are taken forward in the workflow for key DSC device compatibility considerations. At                               
this stage, computational modeling is employed to adsorb each dye candidate molecule onto the surface of TiO2,                                 
the semiconductor to which the dye is absorbed in the DSC working electrode. The changes in electronic structure                                   
and energetics of the dye molecules, by virtue of forming this interfacial device structure, are evaluated, as is the                                     
nature of adsorption vis a vis binding type and adsorption energies. Having brought these dye candidate molecules                                 
closer to their DSC device representation via this large­scale interfacial structure modeling, a task for which Theta is                                   
once again crucial for its realization, structure­function encoded algorithms are used to further assess the relative                               
merits of the dye molecules for prospective DSC application. The dye candidate molecules that pass this stage of                                   
short­listing will be allocated a machine­learnt weighting and molecular diversity index, with these parameters                           
making the final selection of five lead dye candidates, the DSC prospects of which will be experimentally validated.                                   
The PI has already secured a CNM project (proposal: 43690) for the corresponding dye manufacture, device                               
fabrication and testing aspects of this validation work. Realizing this ALCF system architecture for dye discovery, to                                 
the extent that the material predictions reach this stage where they can be tested experimentally for solar­powered                                 
window applications, repesents the goal of this two­year ALCF data science project. Naturally, we hope that the new                                   
light­absorbing materials which we test will perform better than existing DSC dye materials, and be readily                               
applicable to solar­powered window applications. However, it is perhaps somewhat presumptuous to assume that                           
our successes will break the world­record efficiency at this stage of materials discovery. Rather, we already look                                 
ahead beyond this project that will ideally pump­prime a subsequent Aurora application for which the test results                                 
from experimental validation will be used, together with the fate of the compound data in the short­listing stages of                                     
this project, to construct a feedback information loop to better inform subsequent passes of this dye discovery                                 
process. Finally, while the focus of this data science project is on DSC dye discovery, the system architecture to be                                       
developed via this project is eminently translatable to other areas of materials discovery, most easily to other                                 
optoelectronic applications (e.g. new OLED emitters, organic non­linear optical materials for telecommunications,                       
new device media for next­generation optical data storage). The Aurora application will therefore also offer an                               
opportunity to extend our focus to discover other optoelectronic materials. 

1 

¤  Approach: A synergistic computational and experimental science approach wherein 
machine learning and data mining are used in conjunction with large-scale simulations 
and experiments to facilitate a material-by-design approach for DSC dye discovery. 

Data­-Driven Molecular Engineering of Solar­ powered Windows  
 



19 

¤ PI: Doga Gursoy, Argonne National Laboratory 

¤ Other Participating Institutions: Harvard University, 
Univ. of Chicago, Johns Hopkins University, University 
of Notre Dame, APL – Hopkins, Northwestern 
University 

¤ Objectives: The development of a large-scale data 
and computational pipeline for brain science at 
extreme scale 

¤  Impact: The scalable workflows will help facilitate 
gleaning invaluable knowledge about disease models 
such as Alzheimer’s, autism spectrum disorder, etc., 
and enable advances in neuromorphic computing. 

¤ Approach: an entirely new set of tools for 
understanding brain function and pathology  

Large-scale computing and visualization on the connectomes of the brain 
Response to: ALCF Data Science Program (ADSP) Call, 2016 

Argonne National Laboratory, 9700 S Cass Ave. Argonne, IL 60439 USA. E-mail: dgursoy@aps.anl.gov 

 
We will start by implementing 
the workflow with commonly 
used packages in neuroscience 
community: E.g., RhoAna 
framework for image 
registration, machine learning 
based annotations of neurons 
(Kaynig et al. 2015); Ilastik for 
image classification, 
segmentation and analysis 
(Sommer et al. 2011); TomoPy 
for tomographic volume 
reconstruction (Gursoy et al. 
2014); Tomosaic for image 
alignment (Vescovi et al. 2016); and Xbrain for cell and vessel segmentation and classification 
(Dyer et al. 2016). Initial workflows will be constructed in Python with development leveraging 
current open-source software like Dask, YARN, and swift, resulting in a supported framework of 
adopted (or affiliated) packages for managing and processing massive-scale datasets on ALCF 
supercomputers (see Figure 2 for planned processing pipeline). We will also explore other 
community-driven packages for deep learning and their use for segmentation, like Theano, 
TensorFlow, for building new algorithms and neural networks, or Keras, Scikit-Learn for off-
the-shelf machine learning algorithms for supervised and unsupervised learning. 
 
This will require a customized-MPI implementation and also well-defined data and metadata 
structure definitions to manage large-scale datasets, and connectivity with community-supported 
open databases like the openconnectome.org and neurodata.io. We will develop individual 
modules for accurate classification of patterns and discover neural motives in tens of TB/PB 
sized datasets, particularly targeting multi-color x-ray datasets in the second half of FY 2017. 
 
In FY 2018, we will apply lessons learned and focus on optimization for high-end computing 
systems with an emphasis on fully exploiting node level parallelism and memory hierarchy on 
the next-generation of Intel’s Knight Landing (KNL) nodes. We will extend analysis for 
analyzing ~10 TB/PB of raw data acquired from whole mice brains (~10 times larger than whole 
shrewmouse brains in volume). In parallel, we will build an x-ray database of annotated cells and 
vessels to be used for machine learning and multiscale cross-modality studies. This will be an 
important milestone; since this will greatly enhance the correctness computer vision based 
algorithms applied to both x-ray and EM pipelines. Finally, our application will be used to 
analyze the first non-human primate brain, which is about ~10 PB/100 EB in size. This will 
allow us to evaluate how current applications will scale up and point us towards the challenges 
awaiting us for effective use of Aurora, which is the follow-up exascale machine planned to be 
deployed by ALCF on mid-2019. These efforts will pave the way for effective ways of dealing 
with data management, communication, and robustness. Modularity will enable fine-tuning of 
methods and workflows through hyper-parameter optimizations. Overall, after two years we 
expect to have a matured application pipeline that is suitable to process and manage exascale 
brain datasets, and will sketch a rational path for exascale computing. 
 

 
Figure 2: Description of data processing pipelines. Both x-ray and 
EM data pipelines consist of an initial 3D volume reconstruction of the 
brain, which is followed by segmentation and analysis steps. These 
pipelines we will build through this program will allow us, for the first 
time, merge these data using machine learning methods for a multiscale 
understanding of whole mouse brains. 
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Response to: ALCF Data Science Program (ADSP) Call, 2016 

Argonne National Laboratory, 9700 S Cass Ave. Argonne, IL 60439 USA. E-mail: dgursoy@aps.anl.gov 

We will leverage vl3, a modular, 
distributed memory, GPU-
accelerated volume visualization 
framework developed at the 
University of Chicago and Argonne 
National Laboratory. It is routinely 
used to interactively explore large 
(40963 and greater) volume data sets 
on Cooley. Currently limited by 
available GPU memory, efforts are 
already under way to investigate data 
streaming to the GPU to enable 
visualization of larger data sets. 
 
3b. Next-Generation System 
Resources: We estimate a need of 
30M core-hours of the next-generation machine Theta (Cray/Intel based on 2nd generation Intel 
Phis) depending on our progress in developing the framework and the availability of Theta for 
new science applications. In the first half of FY2018, we will transfer and optimize applications 
for Theta, and compare the performance and scalability with Cooley. We estimate based on 
projected Theta performance that we will need approximately 0.5M node-hours for this work. 
Then we will optimize applications further for utilizing the full storage hierarchy including 
NVRAM and configure new data access patterns for computational efficiency. In the second half 
of FY 2018, we will deploy our current datasets for full-scale brain studies, and target complete 
mouse brain and non-human primate brain studies. We project a need for 2M node-hours for this 
work though actual requirements may drop markedly with optimization. 
 
We will leverage existing efforts to extend vl3 to support CPU-based rendering techniques on 
KNL-based systems. This will aid in not only post-processing visualization, but also enable 
potential in situ visualization during reconstruction, segmentation and analysis. 
 
Section 4: Other Collaborations: There are several collaborations that would benefit 
tremendously from this type of computational scaling.  An abridged list is included below: 

• Reconstruction of the octopus visual system (Cliff Ragsdale, Neurobiology, University of 
Chicago). 

• Synaptic basis of resistance to drugs for treating Parkinson’s disease (Prof. Peter Warnke,  
Surgery, University of Chicago). 

• Synaptic basis of direction selectivity in the mouse retina, (Prof. Wei Wei, Neurobiology, 
University of Chicago). 

• Reconstruction of the fly visual system (Prof. Ravi Allada, Neurobiology, Northwestern 
University). 

• Synaptic organization principles of mammalian cortex (Prof. Nicola Brunel, Statistics, 
University of Chicago). 

 
There are also synergistic activities and ongoing collaborations with other research labs on large-
scale scientific computing: 

 
Figure 4: Visualization of the blood vasculature and cell bodies 
of ~1mm3 mouse brain specimen. Raw micro-tomography data 
was acquired at the Advanced Photon Source, and the visualization 
of the processed data was realized by vl3, a scalable and interactive 
parallel volume rendering software developed at Argonne.  

ADSP Category: Tier-1 
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¤ PI: Fabien Delalondre, EPFL, Switzerland 

¤ Objectives: To facilitate and support complex 
computational neuroscience workflows by 
integration of  new data storage paradigm, run 
times and big data technology 

¤  Impact: Simulation and analysis at unprecedented 
scale of brain tissue models on ADSP systems, 
paving the way for future brain research  and 
neuroscience breakthroughs 

¤ Approach: Scale three components of the pipeline 
consisting of data management, data analysis and 
workflow management to fully use the ADSP 
resources. 

Leveraging Non-Volatile Memory, Big Data and Distributed Workflow 
Technology to Leap Forward Brain Modeling 

ADSP Category: Tier-2 
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¤ PI: Taylor Childers, Argonne National Laboratory 

¤ Other Participating Institutions: LBNL, Duke Univ., 
Univ. of Wisconsin 

¤ Objectives: An end-to-end workflow to manage the data 
motion and job management to facilitate the ATLAS 
detector simulation on ADSP resources to process proton 
collision events. 

Accelerating LHC simulation workflows through adaptation 
for leadership systems  

¤  Impact: Leadership resources increases the analysis reach of LHC scientists enabling the 
discovery of new particle physics  

¤  Approach:  Develop an optimized workflow on ADSP resources to significantly accelerate 
the event generation and simulation on next-generation leadership systems.  

ADSP Category: Tier-2 


