
Thomas Jefferson National Accelerator Facility

Performance Portability of QCD with
Kokkos

Balint Joo - Jefferson Lab
Jack Deslippe, Thorsten Kurth - NERSC

Kate Clark - NVIDIA
Dan Ibanez, Dan Sunderland - Sandia National Lab

IXPUG 2017 US Fall Meeting, Oct 26, TACC Austin TX

Thomas Jefferson National Accelerator Facility

Introduction
• With researchers being faced by a diverse array of hardware, and looking to future

systems, performance portability of code becomes increasingly important
- researchers do not have time to rewrite code for each new architecture

- but they may have to run at several centers (TACC, NERSC, OLCF, BlueWaters…)

• Kokkos is a C++ template library that provides abstractions for parallel patterns
which enable programming in a performance portable way:
- parallel_for, parallel_reduction, parallel_scan, in several Execution Spaces (OpenMP,CUDA…)

- multi-dimensional arrays via Kokkos::Views, in several Memory Spaces (Host, MCDRAM,…)

- back ends for OpenMP, CUDA, OpenMP Target Device, pthreads, qthreads, etc.

- optimizations for a variety of processors for e.g. atomics (BWD, KNL, Power, Kepler, Pascal)

• Here, we report on study of performance portability of an Lattice QCD (LQCD) Kernel

Thomas Jefferson National Accelerator Facility

Wilson Dslash Operator
D

ab↵�

y,x

b�

x

=
X

µ

(1� �

µ

)↵� Uab

µ

(x) b�

x+µ̂

+ (1 + �

µ

)↵� Uab †
µ

(x� µ̂) b�

x,x�µ̂

spinor:
4 spins (β)
3 colors (b)

= 12 complex
numbers

gauge link:
3x3 matrix (a,b)
= 18 complex

numbers
spin projector: 

projects out 2 spin
degrees of freedom

from 4
(sparse 4x4 matrix)

forward neighbor spinor
in µ direction

back neighbor spinor
in µ direction

U†µ(x-µ)

ψ(x+μ)ψ(x-μ) Uµ(x)

Thomas Jefferson National Accelerator Facility

Or in pseudo-pseudo code
Kokkos::parallel_for(Kokkos::TeamThreadRange(team,start_idx,end_idx),KOKKOS_LAMBDA(const int site) {

 SpinorSiteView<TST> res_sum; // 4-spins: struct { TST _data[3][4]; }; with TST=complex<>

 HalfSpinorSiteView<TST> proj_res; // 2-spins: struct { TST _data[3][2]; }: with TST=complex<>
 HalfSpinorSiteView<TST> mult_proj_res;

 for(int color=0; color < 3; ++color)
 for(int spin=0; spin < 4; ++spin)
 ComplexZero(res_sum(color,spin));

 // T - minus
 KokkosProjectDir3<ST,TST,isign>(s_in, proj_res,neigh_table(site,target_cb,T_MINUS));
 mult_adj_u_halfspinor<GT,TST>(g_in_src_cb,proj_res,mult_proj_res,neigh_table(site,target_cb,T_MINUS),3);
 KokkosRecons23Dir3<TST,isign>(mult_proj_res,res_sum);

 // Z - minus
 KokkosProjectDir2<ST,TST,isign>(s_in, proj_res,neigh_table(site,target_cb,Z_MINUS));
 mult_adj_u_halfspinor<GT,TST>(g_in_src_cb,proj_res,mult_proj_res,neigh_table(site,target_cb,Z_MINUS),2);
 KokkosRecons23Dir2<TST,isign>(mult_proj_res,res_sum);

 // … other directions: Y-, X-, X+, Y+, Z+, T+ not shown for lack of space
});

Thomas Jefferson National Accelerator Facility

Initial Kokkos Results
• KNL
- Performance was very low

- Even lower than previous legacy codes

- Reason: no vectorization

- 3x3 matrices, 3 vectors

- loop over sites outermost

• GPU
- Initially large amount of register spill to local memory

- Needed to adjust CUDA launch bounds for kernels
(Kokkos::LaunchBounds policy)

- After this performance was good

563	

782	

132	

79	

441	

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	

Kokkos	Naïve	

QUDA	

cpp_wilson_dslash	(SSE)	

Kokkos	Naïve	

QPhiX	(SOA=8)	

P1
00
	

KN
L	

GFLOPS	

Single RHS Dslash Performances:
Vol=32x32x32x32 sites

Thomas Jefferson National Accelerator Facility

Vectorization Potential
• Lots of parallelism over lattice sites (L4 sites with L=4..32 sites)

• Naive operator: Arrays of Structures (AOS) - no real vectorization potential
- In the past vectorized 3x3 matrix - vector operations using SSE, AVX, possibly over

directions/spin components.

- gets cumbersome for longer vectors (e.g. length 16).

• Today most implementations vectorize over lattice sites in some way (next slide)

• Alternative: Multiple-Right Hand Side (MRHS) Operator: χi = D(U) ψi (i=1..N)
- Valid science case for solving many systems at once (e.g. quark propagators)

- Keep AOS layout, trivially vectorize over i

- Also can reuse Gauge field by a factor of N.

- Same as Diagonal operator of 4D formulation of DWF fermions

Thomas Jefferson National Accelerator Facility

Vector Single Right Hand Side cases

Vector Unit of Length N
log2N dimensional

virtual node (VN) grid

Lay-out lattice over
virtual node grid

Ascribe corresponding sites
from virt. node grid into

vector lanes

Nearest neighbor from other VN :
data from other lane => lane permutations

Virtual Node Vectorization
(P. Boyle, e.g. in Grid, BFM)

e.g. arXiv:1512.03487[hep-lat]

X-Y Tiling, e.g. QPhiX
(idea by D. Kalamkar)

Pad_xy

Assemble full Vector from ngy x soa pieces:
 - e.g. ngy=4, soa=4, ngy=2 soa=8, or general gather
 - unaligned loads for some neighbors in x-y plane
 - user now has to choose soa to suit problem

Lxh

Ly

By

 ngy

soa

X

Y

e.g. B. Joo, et. al. ISC'13

https://link.springer.com/chapter/10.1007/978-3-642-38750-0_4

Thomas Jefferson National Accelerator Facility

SIMD Types & Portable Vectorization
ST = SIMDComplex<T,4>

TST= GPUSIMDComplex<T,4>

tid.x=0 tid.x=1 tid.x=2 tid.x=3

ST = SIMDComplex<T,4>

// view_in and view_out are Kokkos
// views holding type ST
// e.g. View<ST[num_sites][3]>

// Thread private Temporary
TST tmp;

// indices j, k fixed by outer
// parallel_for
parallel_for(
ThreadVectorRange(4),
[=](int i) {

 tmp(i) = (view_in(j,k))(i);

 (view_out(j,k))(i) =
 2.0*tmp(i);

});
ST = SIMDComplex<T,4>

ST = SIMDComplex<T,4>

TST = SIMDComplex<T,4>

#pragma ivdep
for(int i=0; i<4;++i) {..}

CUDA backend OpenMP backend

O
pe

nM
P

th
re

ad

Thomas Jefferson National Accelerator Facility

Implementing MRHS Operator
• Dslash Code Identical to SRHS Operator thanks to templates

- Instead of MGComplex<T> use SIMDComplex<T,N> in template
types for Global Arrays (ST, GT)

- SIMDComplex<T,N> or GPUSIMDComplex<T,N> for Thread Local
arrays (TST)

• Dispatch Kernels, with Kokkos::TeamPolicy, setting Vector
length To N

• generates X-dimension of length N for GPU Thread blocks

• KNL:
- Wrote specializations for Complex Number operations on

SIMDComplex<float,8> using AVX512 intrinsics

• GPU:
- Created struct for complex numbers deriving from ‘float2’ type for

coalesced reads/writes

- ThreadVectorRange had high overhead for short (single vector)
loop, hacked this and by hand inserted threadIdx.x

template<> // KNL Specialization
KOKKOS_FORCEINLINE_FUNCTION
void
A_add_sign_B<float,8,SIMDComplex,SIMDComplex,SIMDComplex>(
 SIMDComplex<float,8>& res,
 const SIMDComplex<float,8>& a,
 const float& sign,
 const SIMDComplex<float,8>& b)
{
 __m512 sgnvec = _mm512_set1_ps(sign);
 res._vdata = _mm512_fmadd_ps(sgnvec,b._vdata,a._vdata);
}

template<typename T, int N> // GPU Specialization
KOKKOS_FORCEINLINE_FUNCTION
void A_add_sign_B(GPUThreadSIMD<T,N>& res,
 const GPUThreadSIMD<T,N>& a,
 const T& sign,
 const GPUThreadSIMD<T,N>& b)
{
 auto _a = a(threadIdx.x); auto _b = b(threadIdx.x);
 T res_re = _a.real(); res_re += sign*_b.real();
 T res_im = _a.imag(); res_im += sign*_b.imag();
 res(threadIdx.x) = MGComplex<T>(res_re,res_im);
}

Thomas Jefferson National Accelerator Facility

MRHS Results

• KNL results are good with AVX512 optimization (slightly more than QPhiX SRHS)

• KNL results are less good without AVX512 optimization (38 GF is v. slow)

• Once ‘threadIdx.x’ specialization was added GPU MRHS code was also great:
- About 86% of QUDA version.

1,213	

1,409	

38	

468	

428	

0	 200	 400	 600	 800	 1000	 1200	 1400	 1600	

Kokkos	(V=16)	

QUDA	(V=16)	

Kokkos	No	AVX512	(V=8)	

Kokkos	With	AVX512	(V=8)	

QPhiX	(SOA=8,SRHS)	

P1
00
	

KN
L	

M
RH

S	

GFLOPS	

Multiple RHS Dslash
Performances:

Vol = 16x16x13x32 sites
V=8 for KNL

V=16 for GPUs
(V=vector length=#RHS)

Thomas Jefferson National Accelerator Facility

Vectorized SRHS Operator
• We implemented the Virtual Node Mode approach

• Discussions about future Kokkos SIMD Type on GPUs:
- likely SIMD length will be 1, to suit Kokkos::LayoutLeft on GPUs

- In this case Vectorized Operator is the same as the Naive
operator on GPU, which is already known performant!

- GPU Permutes are trivial (identity/not needed)

• Extra KNL optimizations
- optimize permutes using _m512_permutexvar_ps()

- spin <-> color interchange (to color fastest): L1 locality

- 4D Blocking using Kokkos::MDRange exec. policy

• Autotune block size for performance

- Gauge Field Access:

• keep copies of back pointing links => unit stride access for gauge

• pre-permute links from back neighbor: no gauge permute in Dslash

Bx=4

By=4

tid=0 tid=1

tid=2 tid=3

block=0 block=1

block=2 block=3

MDRangePolicy<2,IterateLeft,IterateLeft>
 policy({0,0},{8,8},{4,4});

tid=0
tid=4
tid=8
tid=12

(0,0)

(7,7)

OpenMP CUDA

Thomas Jefferson National Accelerator Facility

Block Tuning for MDRange

• Block Tuning gave broad performance distributions, with few (<10) tunings giving the
highest performance. Autotuning is a must & unfortunately the space is big (4D).

Cori KNL
Node

SummitDev
P100 GPU

Thomas Jefferson National Accelerator Facility

A note about perf. measurements
• KNL Performance measurement

is not always easy:
- 5 runs, with 10 timing

measurements each

- Run to run variability (error bars on
the measurements)

- Often first few measurements of the
higher than rest?

• Turbo followed by down-clocking?

• Can potentially affect autotuning?

• I now quote numbers from the
plateaux region

Thomas Jefferson National Accelerator Facility

Current Performance Summary
• SRHS Case:

- Kokkos Vectorized Dslash with AVX512 and tuned
blocking matches QPhiX on Cori KNL node (68
cores, 272 threads)

- Unvectorized & No AVX cases are slow

- Kokkos Naive CUDA version is 72% of QUDA on P100
(SummitDev)

- Vectorized (but V=1) QUDA version benefits from
block tuning, memory & locality optimizations and
md_parallel_for: 79% of QUDA on P100
(SummitDev)

• MRHS Case:
- Kokkos With AVX512 exceeds corresp. QPhiX

SRHS performance on Cori KNL node for 8 RHS

- Kokkos Without AVX512 is very slow

- Kokkos CUDA version is 86% of QUDA for 16 RHS
on SummitDev (P100)

563	

614	

782	

132	

79	

27	

442	

441	

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	

Kokkos	Naïve	

Kokkos	Vector	(V=1)	

QUDA	

cpp_wilson_dslash	(SSE)	

Kokkos	Naïve		

Kokkos	Vector	(V=8,	No		AVX512)	

Kokkos	Vector	(V=8,	with	AVX512)	

QPhiX	(SOA=8)	

P1
00
	

KN
L	

SR
HS

	

GFLOPS	

1,213	

1,409	

38	

468	

428	

0	 200	 400	 600	 800	 1000	 1200	 1400	 1600	

Kokkos	(V=16)	

QUDA	(V=16)	

Kokkos	No	AVX512	(V=8)	

Kokkos	With	AVX512	(V=8)	

QPhiX	(SOA=8,SRHS)	

P1
00
	

KN
L	

M
RH

S	
GFLOPS	

Vol=32x32x32x32 sites

Vol=16x16x16x32 sites

Thomas Jefferson National Accelerator Facility

Absolute Performance is good too

• Little Below Roofline.
Reported L1 AI=1.97

• Vtune is concerned with
spin wait in barrier

• Good CPU usage and
mem BW Usage

Vector SRHS
Dslash on

Cori KNL node

Thomas Jefferson National Accelerator Facility

Comments & Discussion
• Since Virtual Node Vector SRHS Dslash works well on both CPU and GPU, one may consider

dead-ending the naive and MRHS implementations for the future.

• Can implement an MRHS implementation based on Vector Dslash adding inner loops for the code
processing the neighbors in each direction.
- Keep the gauge reuse, but get vectorization from sites. Allows arbitrary number of RHS, not just multiples of the

vector length without loss of efficiency.

• For vectors longer than length 1, the specialized X-thread GPU SIMD technique (using threadIdx.x)
is not currently compatible with MDRange exec policy. We cannot rely on threadIdx.x being the
‘vector lane’, as MDRange uses it for its own purposes.
- In this case ThreadVectorRange construct reduces to a simple loop for vectors longer than length 1

- General ThreadVectorRange code will work but specializations using threadIdx.x must be disabled (will fail)

• We could implement Vectorized Dslash not using MDRange, but regular ThreadTeam policy. Then
X-thread GPU SIMD technique could be implemented for vectors longer than length 1.
- Lane permutes could possibly be implemented with __shfl() instructions

Thomas Jefferson National Accelerator Facility

Possible Future Work
• A bit more performance exploration (different volumes, weak scale on node etc.)

• Work towards a Performance Portable Multi-Grid Solver library for LQCD
- Full Wilson-Clover Linear Operators & Basic Krylov Subspace solvers

- Restriction and Prolongation Operators, Coarse Operator, Coarse Solvers

• Interface with Trilinos - Solvers Component Of USQCD ECP Project
- Can we leverage Trilinos’ solvers rather than rewriting my own?

• Work with Kokkos developers on areas of common interest
- SIMD Types (my interest being specifically SIMD Complex)

- Other index-traversal policies & layout combinations (e.g. cache oblivious)

- Multi-node aspects: efficient halo exchanges for current & future hardware

Thomas Jefferson National Accelerator Facility

Conclusions
• Excellent performance reached, rivaling or exceeding existing optimized libraries.

• Kokkos Parallel Pattern Constructs, Policies and Views
- freed us from CUDA & OpenMP nuts and bolts, and index-order worries for the most part

- allowed the main logic of the code to be portable

- provided an easy to use efficient blocking construct (MDRange, md_parallel_for)

- did not get in the way of performance

• For performance we still had to:
- implement performance-portable (vectorization oriented) algorithms (MRHS and VSRHS)

- perform regular perf. optimization work (use perf tools, rearrange memory access, etc.)

- be aware of hardware/programming model issues (e.g. caches, CUDA launch-bounds, spills)

- manually vectorize complex arithmetic (AVX512 on KNL, directly use threadIdx.x on GPU)

• these generic features can be added to Kokkos (SIMD type and ThreadSIMDRange?)

Thomas Jefferson National Accelerator Facility

Acknowledgments
• B. Joo acknowledges funding from the U.S. Department of Energy, Office of Science, Offices of

Nuclear Physics, High Energy Physics and Advanced Scientific Computing Research under the
SciDAC-3 program.

• B. Joo acknowledges funding from the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research under the USQCD Exascale Computing Project.

• B. Joo acknowledges travel funding from NERSC for a summer Affiliate Appointment for work
on Kokkos.

• The 2017 ORNL Hackathon at NASA was a collaboration between and used resources of both
the National Aeronautics and Space Administration and the Oak Ridge Leadership Computing
Facility at Oak Ridge National Laboratory. Oak Ridge Nation Laboratory is supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

• We gratefully acknowledge use of computer time at JeffersonLab (SciPhi XVI cluster), K80
Development node, NERSC Cori and SummitDev.

Thomas Jefferson National Accelerator Facility

Compiler Setup
• Code at: https://github.com/JeffersonLab/mg_proto.git on the mdrange branch
- The kokkos code is in the tests/kokkos directory. Right now all of MG proto needs to be built

and QDP++ is a prerequisite for testing. Working on splitting this code out as a separate entity

• Cori KNL setup: Intel/2018.beta compiler,
- CXXFLAGS=“-g -O3 -std=c++11”

- OMP_NUM_THREADS=272, OMP_PROC_BIND=spread, OMP_PLACES=threads

- srun -n 1 -c 272 —cpu_bind=threads …

• SummitDev setup:
- gcc-5.4.0, CUDA 8.0.54, nvcc_wrapper from Kokkos

- CXXFLAGS=“-g -O3 -std=c++11”

- OMP_NUM_THREADS=10, OMP_PROC_BIND=spread, OMP_PLACES=threads

• less relevant since these are single GPU jobs and performance is on the GPU

https://github.com/JeffersonLab/mg_proto.git

