- LOS ALABORATORY

EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

On the Readiness for Trinity Open-Science

Genesis –

A Molecular Dynamics Application for Bio-Materials

XIPUG 2017

Adetokunbo Adedoyin, PhD

07/10/2017

- EST.1943 —

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Genesis Agenda:

Overview

- Historical Perspective
- Algorithm Description
- Algorithms View

Performance Profiling

- Performance on KNL vs. KNL
- Performance on KNL vs. Haswell

Modernization

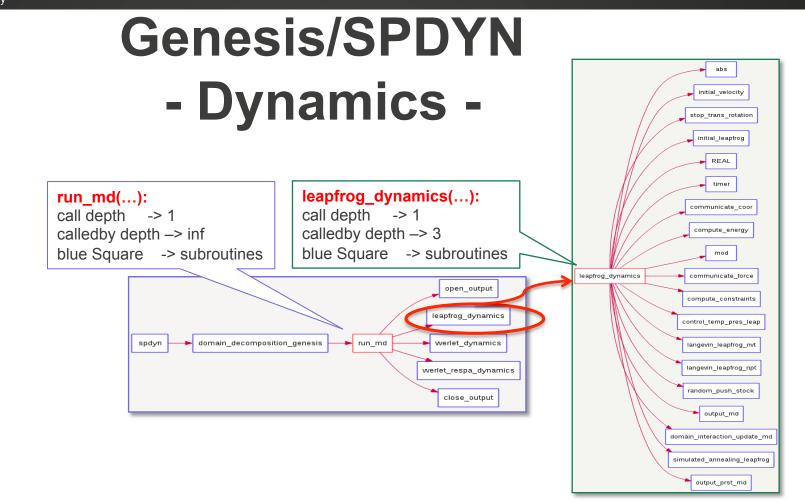
- General Observation
- Re-Factorization Strategies

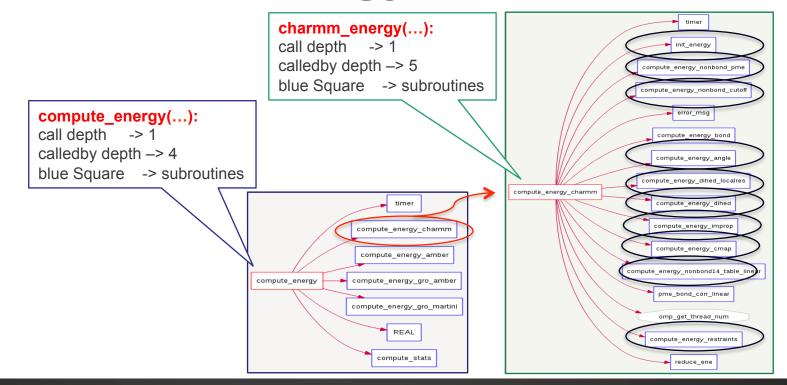
Gratitude

o DoE

- Additional Contributions
 - Cray (Hackaton/Boot-Camp)
 - Intel (Hackaton/Boot-Camp)
- LANL IC Institutional Computing Personnel:
 - CoMD Development Team
 - Mike Wall and Adetokunbo Adedoyin
 - Bob Thompson (Overall Support)
 - Rob Aulwes (Guidance)
 - Louis Vernon (Contributions)

Historical Perspective


Simulation:	 1st 100-Million Atom Simulation
	 1st 1-Billion Atom Simulation Trinity at LANL Institutional Computing
Scaling:	 Very Good Relative to NAMD / GROMACS
On Node Performance:	 Good on Node Performance Relative to NAMD / GROMACS Greatly Improved by IC-LANL


Understanding Genesis SPDYN-1.1.0

- Algorithm Description -

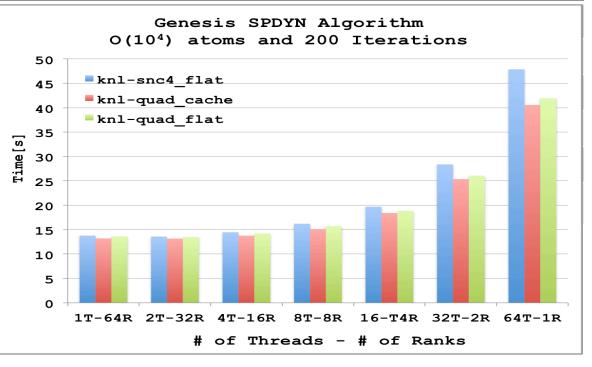
Application 7	Гуре:		
•	Application Type		Molecular Dynamics Application for Bio-Materials
	Application Release (open source)		http://www.aics.riken.jp/labs/cbrt/download/
Application E	Branches:		
•	SPDYN	Current focus for data & thread parallel	
•	ATDYN		
•	Helper Binaries		
Programing	Paradigms:		
-	MPI		
	Open-MP	Loop level i	mplementation
Docompositi	on Tuno:		
Decompositi			
	Spatial	Based on Euclidean Space Metric i.e. a cube	
	Atomic	Based on M	Aaterial Metric
Complexity:		≈O(n²)	
Features:		≈80K lines	of code

Genesis/SPDYN - Energy -

2/9/16 | 9

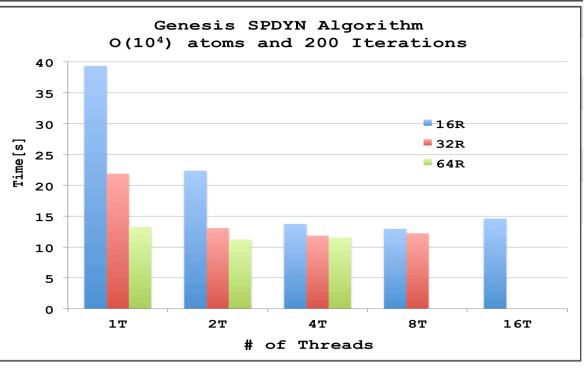
Performance Profiling Genesis/SPDYN-1.1.0

Performance Profile

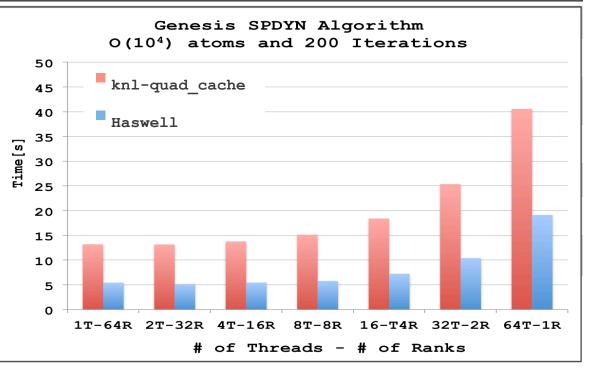

Hotspots Summary: Genesis/SPDYN

<u>% Runtime Per Region</u>	Serial:	~4%
	Parallel:	~96%
<u>% Per Subroutine Runtime</u>	<pre>sp_energy_table_linear(,,):</pre>	~70%
	sp_pairlist_mod(,,):	~10%
	Others(,,):	~20%

s typically	results in imp
	CPU Time ®
spdyn	65.119s
spdyn	10.150s
spdyn	3.669s
spdyn	2.590s
spdyn	2.060s
N/A*	9.801s
-	Module spdyn spdyn spdyn spdyn spdyn


Genesis on KNL Runs I

Genesis Version:	Out of Box
KNL Specs:	Intel® Xeon Phi™ Processor 7210 ~2 nd Quarter 2016
Performance Goals:	Node performance
# MPI Ranks:	16/32/64 & Open-MP Threads
Best Results:	QUAD-Cache 64&32 Ranks
Comparable Results:	QUAD-Cache / 4TH-16R


Genesis on KNL Runs II

Genesis Version:	Out of Box
KNL Specs:	Intel® Xeon Phi™ Processor 7210 ~2 nd Quarter 2016
Performance Goals:	Node performance
# MPI Ranks:	16/32/64 & Open-MP Threads
Best Results:	QUAD-Cache 64&32 Ranks
Comparable Results:	QUAD-Cache 1TH-64R 4TH-16R

Genesis on KNL Runs III

Genesis Version:	Out of Box
KNL Specs.:	Intel® Xeon Phi™ Processor 7210 ~2 nd Quarter 2016
Haswell Specs.:	Intel® Xeon® Processor E5-2697v3 Dual Socket
Performance Goals:	Node performance
# MPI Ranks:	16/32/64 & Open-MP Threads
Best Results:	32R-2TH (KNL & HSW)
Comparable Results:	KNL & HSW 64R-1TH / 16R-4T

Modernization Approach

- Modernization Mindset:
 - "Cutting Rod Approach"
 - Optimal substructures lead to optimal structures
- Machine Choice (KNL/64-68cores/4-HT):
 - Based on Baseline runs
 - NUMA decomposition(SNC4/SNC2/QUAD)
 - Memory Layout (Flat/Cache)
- Modernization Exercise Goals:
 - Improve Vectorization
 - Improve Threading

Modernization Strategy

Approach:

- Use Quick Build Application
 - Genesis signature
 - Lines of Code: 80K
 - Build Time: > 5min
 - Computer language (Fortran)
 - CoMD, Perhaps?
 - Proxy for SPaSM
 - Lines of Code: 5K
 - Build Time: < 10 secs
 - Similar underlying physics (MD || Summations)
 - Computer language (C)

• Knowledge Transfer to Genesis

Modernization Findings I

- Vectorization Quality:
 - Vector vs. Scalar cost
 - Performance Reflective Vector vs. Scalar cost
- Multithreading requires "Untangling of Dependencies":
 - Vector Reduction subset Thread Reduction
 - Improves Vectorization Quality
 - Key for MD algorithms (Conservation Principles:+)
- Data Alignment (cache contention):
 - C Code Compiler Hints | Macro
- Data Structure:
 - Contiguous Data Access
 - So(AoA) to 3XSoA
 - Strided access
- Optimal "aprun options":
 - Favorable Network Connectivity(MPI)
 - Favorable Thread Affinity

Knowledge Transfer

- Data Structure:
 - Large Arrays (4D Forces Array)
 - Modified ~4000-lines of code
- Data Alignment:
 - Fortran Code Compiler Flag | Compiler Hints | Macro
- Vectorization:
 - Still riddled Indirection (Hinders Vectorization)
 - Maintain Fixed MaxAtom Size (Pseudo Atoms, Perhaps?)
- Mixed Arithmetic Intensity (Roofline Metric):

Arithmetic Intensity	Recommended Simulation Configurations
Compute Bound (FFT/Stencil)	#Threads - All Available Thread Affinity - Compact
Memory Bandwidth Bound (Summation)	#Threads - ½ Available Thread Affinity - Scatter

- Cache Blocking (Experimental)
 - Requires Vectorization of force kernel
 - Portability Issue (Requires pre-run (tile-size))

Los Alamos National Laboratory

Question/Comment ?/!

Summary

- How to extract proxy apps?
 - Choose Metric (Roofline Analysis)
 - Transfer subroutines with relevant algorithms signatures
- Running at Scale:
 - o On node resource limitations
 - Max problem size per node
 - Need for
 - Post processing data logistics
 - Luster
 - Burst Buffer