19 JUNE 2017 ISC, FRANKFURT AM MAIN, GERMANY

EXPERIENCES WITH KNL IN THE ALCF EARLY SCIENCE PROGRAM

DAVID E. MARTIN Manager, Industry Partnerships and Outreach Argonne Leadership Computing Facility TIM WILLIAMS Deputy Director of Science Argonne Leadership Computing Facility

ALCF THETA SYSTEM & EARLY SCIENCE PROGRAM (ESP)

Argonne Leadership Computing Facility

THETA

- 3624 nodes
 - Xeon Phi 7230 (2nd gen.)
 - 16 GB MCDRAM
 - 192 GB DDR4
 - 128 GB SSD
- Peak 9.65 petaFLOPS
- Cray Aries interconnect
- 10 PB Lustre parallel file system

EARLY SCIENCE PROGRAM

- Theta dedicated for science runs: just ended
- 6 Tier 1 + 6 Tier 2 projects
- Optimize applications
- Solidify libraries & infrastructure
- Prep Theta for science on day one

ALCF Early Science Program

Applications Readiness

 \odot Prepare applications for next-gen system:

Architecture

 \odot ~Two year lead time

Proposals

• Ambitious targeted science calculation

http://esp.alcf.anl.gov

- Parallel performance
- Development needed

⊙ Team

Argonne Leadership

Support

PEOPLE

- Funded ALCF postdoc
- Catalyst staff member support
- Vendor experts

TRAINING

- Training on HW and programming
- Community workshop to share lessons learned

COMPUTE RESOURCES

- Current ALCF systems
- Early next-gen hardware & simulators
- 3 months dedicated Early Science access
 - Pre-production (post-acceptance)
 - Large time allocation
 - Continued access for rest of year

ESP Timeline

Argonne Leadership Computing Facility

Task	СҮ2015				CY2016				CY2017				СҮ2018				СҮ2019			
	Q1	Q2	Q3	Q4	Q1	Q2	Q4	Q4												
Theta CFP																				
Theta selection																				
Theta ESP projects																				
Theta Early Science																				
Aurora CFP																				
Aurora selection																				
Aurora ESP projects																				
Aurora Early Science																				
Mira production																				
Theta production																				
Aurora production																				

THETA ESP PROJECTS

Tier 1

THETA ESP PROJECTS

Code: CoreNeuron

PI: Fabien Delalondre (EPFL) Many coupled, nonlinear ODEs Catalysts: Y.Alexeev, T. Williams

> **Code: HSCD** *PI: Alexei Khokhlov (U. Chicago)* DNS, reacting flows, patch AMR *Catalyst: M. Garcia*

Code: HACC *PI: Katrin Heitmann (ANL)* N-body gravity + SPH hydro *Catalysts: H. Finkel, A. Pope*

Catalysts: H. Finkel, A. Pope Postdoc: J.D. Emberson

> **Code: SU2** *PI: Juan Alonso (Stanford U)* Large Eddy Simulation, O(3-4) *Catalyst: R. Balakrishnan*

Codes: WEST & Qbox

PI: Giulia Galli (U. Chicago) MBPT & ab initio MD Catalyst: C. Knight Postdoc: H. Zheng

Tier

THETA ESP PROJECTS

Codes: FHI-Aims & GAtor

PI: Volker Blum (Duke U.) MBPT (DFT) & genetic algorithm *Catalyst: Álvaro Vázquez-Mayagoitia*

Code: PHASTA *PI: Kenneth Jansen (U. Colorado)* CFD, unstructured mesh *Catalyst: Hal Finkel*

Code: Nek5000 PI: Christos Frouzakis (ETHZ) Spectral element CFD with combustion Catalyst: Scott Parker

Codes: MILC & CPS

PI: Paul Mackenzie (FNAL) Lattice QCD Catalyst: James Osborn

Code: GAMESS *PI: Mark Gordon (Iowa State U.)* FMO - quantum chemistry *Catalysts: Yuri Alexeev, Graham Fletcher*

Code: GFMC *PI: Steven Pieper (ANL)* Greens Function Monte Carlo – nuclear *Catalyst: James Osborn*

NEXT-GENERATION COSMOLOGY SIMULATIONS WITH HACC: CHALLENGES FROM BARYONS

Code: HACC • PI: Katrin Heitmann (ANL) • N-body gravity + CRKSPH hydrodynamics • Catalysts: Hal Finkel, Adrian Pope • Postdoc: J.D. Emberson

Cold dark matter

NEXT-GENERATION COSMOLOGY SIMULATIONS WITH HACC: CHALLENGES FROM BARYONS

Code: HACC • PI: Katrin Heitmann (ANL) • N-body gravity + CRKSPH hydrodynamics • Catalysts: Hal Finkel, Adrian Pope • Postdoc: J.D. Emberson

9

- KNL-specific short-range PP force code
 - Work by Vitali Morozov
 - KNL 6X faster than BG/Q per core
 - 4X wider vectors
 - 0.8X clock rate
 - 2X FP instructions per cycle
- Machine-independent long-range force code

•2048³ particles on 64 to 2048 nodes (2304³ particles on 3072 nodes) •8 ranks per node, 16 threads •Cache-guad mode

Strong scaling on Theta

EXTREME SCALE UNSTRUCTURED ADAPTIVE CFD: AERODYNAMIC FLOW CONTROL

Code: PHASTA • PI: Kenneth Jansen (U. Colorado Boulder) • CFD, unstructured mesh • Catalyst: Hal Finkel

• 3D finite element

- unstructured adaptive mesh
- fully implicit
- 5 billion elements
- 2048 Theta nodes (128K KNL cores)

EXTREME SCALE UNSTRUCTURED ADAPTIVE CFD: AERODYNAMIC FLOW CONTROL

Code: PHASTA • PI: Kenneth Jansen (U. Colorado Boulder) • CFD, unstructured mesh • Catalyst: Hal Finkel

FLOW, MIXING AND COMBUSTION OF TRANSIENT TURBULENT GASEOUS JETS IN CONFINED CYLINDRICAL GEOMETRIES

Code: Nek5000 • PI: Christos Frouzakis (ETHZ) • Spectral element CFD with combustion • Catalyst: Scott Parker

- Internal combustion engine

 Compression ignition
 Natural gas as fuel
- Direct numerical simulation
- Low Mach number combustion
- Strong scale to fit in MCDRAM

Turbulence in intake stroke of ICE simulated on Theta

SCALE-RESOLVING SIMULATIONS OF WIND TURBINES WITH SU2

Code: SU2 • PI: Juan Alonso (Stanford U.) • CFD (LES) • Catalyst: Ramesh Balakrishnan

- Large Eddy Simulation (LES) of a few turbines plus tower
 - Third order finite volume
 - High order discontinuous Galerkin
- LES results feed reduced-order Kinematic Simulation for wind farm design
- SU2 evolving into high-end open source CFD package (community code)
 - Finite volume methods
 - Unstructured mesh

Gaurav Bansal, Anand Deshpande, Dheevatsa Mudigereb, others (Intel); Tom Economon, Francisco Palacios (Stanford)

SCALE-RESOLVING SIMULATIONS OF WIND TURBINES WITH SU2 Optimizations

- Threads
 - Single OMP parallel region at high level in program
- Vectorization
 - Outer loop (edges)
 - Loop tiling
 - Reduced gathers-scatters
- Memory hierarchy
 - Edge/vertex RCM reordering
 - Smart allocation
 - Change AoS to SoA

14 Gaurav Bansal, Anand Deshpande, Dheevatsa Mudigereb, others (Intel); Tom Economon, Francisco Palacios (Stanford)

THETA ESP LESSONS LEARNED

- Structure of Arrays
- Strong scale to fit in MCDRAM
 - Successes with many MPI ranks per node (up to 64)
- Transition from BGQ (MPI + OpenMP) → KNL not generally painful
 - Adjust ranks/threads sweet spot
- Memory access looks like streaming?
 - #pragma vector nontemporal
- Use MKL FFT (multiple electronic structure codes)

THETA ESP (AND OTHER) LESSONS LEARNED

- Running within MCDRAM? Cache mode as good as flat mode
 - Flat mode: numactl -m 1 (allocate in HBM; error if spills out)

Code	Method	Runtime flat vs. cache
HACC	Tree N-body, particle-mesh	-0.1%
WEST	Many body perturbation theory	+8.98%
Qbox	Ab initio molecular dynamics	-6.6%
USQCD	Several Lattice QCD methods	Virtually no difference
NAMD	Classical molecular dynamics	No significant difference
QMCPACK	Quantum Monte Carlo	-4.8%
VSVB	Electronic structure	+4.2%, +0.59%

