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Cardiac Electrophysiology
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Calcium Handling in the Human Cardiac Ventricle
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Ryanodine Receptors

RyR scheme LCC-RyR interaction in dyad
t-tubule
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Computational Scope

Tissue (3D grid of cells) One cell
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Computational Scope

Tissue (3D grid of cells) One cell
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V% One dyad
4
/// Ca+ compartments
AV 100 RyRs
/// 15 L-type channels

2 * 10° Cells in the heart

10% Dyads per cell

102 Ryanodine Receptors (RyRs) per dyad
104 Time steps per heartbeat

10"° possible state transitions
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Computation Timestep

For each Cell do (OpenMP parallel for)

1. Compute L-type opening probabilities
Simulate L-type opening
Compute RyR opening probabilities

. ) LCC-RyR interaction in dyad
Simulate RyR opening t-tubule
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Compute calcium concentrations w
CIJ} y Dyadic

6. Dyad diffusion
Cell diffusion (Local & MPI)
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Computation Timestep

For each Cell do (OpenMP parallel for)

1. Compute L-type opening probabilities
Simulate L-type opening
Compute RyR opening probabilities
Simulate RyR opening

a &~ W b

Compute calcium concentrations
6. Dyad diffusion
Cell diffusion (Local & MPI)

Relevant metric: Cell computations/s (CC/s)
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Basic Configuration: Dual Sandy Bridge

4000 CC/s
(Cell computations
per second)
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Node Structure on Abel

14000 CC/s
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Node Structure on TianHe-2

17000 CC/s

QPI
32 GB/s

59.7 GB/s 59.7 GB/s

MPI Interconnect
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Computation on TianHe-2

Largest grid so far: 3.2 million (400 nodes)

Problem: heterogeneous load balancing and memory

Need about 3 MB per cell -> about 2000 cells per Phi max

Find feasible and balanced allocation to avoid idling
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Domain Decomposition

* Cuboid node subdomains
 Unstructured intra-node subdomains
 Use 20 x 20 x 20 node subdomains
 93% CPU load
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Xeon Phi 7250 Server
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14000 CCI/s
“Out of the box”

16 GB MCDRAM
96 GB DDR4
Homogeneous

5000 Cells in HBM
34000 Cells in DDR4



State Transitions

Stochastic state transitions for each ryanodine receptor
106 possible state transitions per cell and time step
Bernoulli trials (coin toss) cost too many random numbers

Binomial distributions are efficient but irregular
Difficult vectorization due to variable number of RyRs per state
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Vectorized Binomial Distribution Sampling

F(k;n,P) — PI'(X < k) — Z ()pz(l _p)n_z

i—0 \’

function VectorizedBinomial {

Input: Vectors N, P, RANDVAL

Output: Vector K

Initialize K= 0

Initialize 1P = Vector_subtract(1,P);

Initialize PKNK = Vector_power(1P,N);

Initialize P1P = Vector_divide(P,1P);

for (inti=0; i< max(N); i++) {
BC = Vector_gather(BC_table,N,K);
SUB = Vector_multiply(BC,PKNK);
RANDVAL = Vector_subtract(RANDVAL,SUB);
PKNK = Vector_multiply(P1P,PKNK);
MASK = Vector_mask_compare(MASK,RANDVAL > 0);
K = Vector_mask_add(K,1,MASK);

}
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Performance Improvement

Performance gain from hardware and software changes

Hardware Plattforms
Xeon Phi 31S1P

Xeon Phi 5110P

Dual Xeon E5-2692v2
Xeon Phi 7250
Optimizations on KNL
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Cell computations/sec.
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Strong Scaling

Strong scaling of the cell computation
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Hyperthreading matters, bandwidth limited
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Memory Strategies

1. Cache Mode
« Easiestto use

* Loss of memory
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Memory Strategies

1. Cache Mode
- Easiest to use
* Loss of memory

2. Flat mode with hbwalloc
* Maximum control

« Size specific
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Memory Strategies

1. Cache Mode
- Easiest to use
* Loss of memory
2. Flat mode with hbwalloc
* Maximum control
« Size specific
3. Flat mode with ordering and numact/ -preferred=1
 [Easy and portable

« Software development hazard
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Performance is Memory Dependent

Performance by memory usage
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Scaling is not a Problem (on TH-2)
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Simulation of Unhealthy Tissue
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400 cells
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Observations

« Difficult computation
« Easy communication

« Organ scale requires very large machines
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Observations

« Difficult computation
« Easy communication

« Organ scale requires very large machines
« KNL has decent performance “for free” (3x over KNC)

 Intrinsics enable full performance (another 3x)

 Memory limited and bandwidth bound

simula - by thinking constantly about it



Observations
« Difficult computation
« Easy communication

« Organ scale requires very large machines

« KNL has decent performance “for free” (3x over KNC)
 Intrinsics enable full performance (another 3x)

 Memory limited and bandwidth bound

K20X GPU delivers 2 KNL CC/s @ 12 KNL GB/s
P100 and V100 could be much faster
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PHI vs GPU

KNL advantages:

* No heterogeneous programming

« Smaller penalty for exceeding 16 GB

e Could use MCDRAM <-> DDR swapping

* Low reuse: requires temporal blocking to be effective
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Questions ?
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