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The Domain of Neuroscience 
Exploring the functionality of Human Brain 

Mathematical modeling representing neurons,  

 neuronal networks 

Behavioral experiments 

Long-term goals (The holy Grail): 
 Brain Functionality 
 understanding and 
 restoration. 

TrueNorth, IBM’s Neuromorphic Chip: A brain-
inspired supercomputing chip able to calculate 
millions of neuron-models at real time 
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Problem Complexity 
Detailed models require many FLOPs 
per neuron 

Massive networks means many neurons 
per network 

Densely connected networks need 
large volumes of data exchange 

Long experiments leads to many  
simulation steps per experiment 

Real-time response is currently 
impossible in large-scale, detailed 
simulations Source: Quanta Magazine, How Humans Evolved Supersize Brains 
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Who else is on it ? 

Europe (Human Brain Project) 

 

Japan (Brain/MINDS) 

Logos of the Human Brain 
Project, Europe on the left 
and the BRAIN initiative, 

U.S.A. on the right 

USA (BRAIN Initiative) 

 

Korea (Korea Brain Initiative) 
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Motivation 
 Huge potential impact on everyday life 
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Motivation 
 Huge potential impact on everyday life 

  
Wealth of knowledge 

 

Brain damage restoration 

 

Quality of Life improvements 
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InfOli Simulator - Description 
 Hodgkin-Huxley-based model, biophysically accurate neuron representation of 
human Inferior Olivary Nucleus 

 Tri-compartmental model  
Dendrite: Communication 

Soma (body): Computation 

Axon: Output 

 Gap Junction (GJ) mechanic: 
The communication between 
dendrites in the network 
 

 !performance bottleneck! 
Simple anatomy of a neuron, display of the three compartments 

9 



InfOli Simulator - Description 

The InfOli simulator 

 Time-driven simulator, non-linear 
model 

 Network connectivity randomly 
generated, standard number of  GJs 
per neuron 
Access dendritic data of neurons 

in the GJ 
Calculate GJ state, incoming 

current in the GJ 
Calculate neuron compartmental 

state 
Record output (e.g. ax. voltage) 
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InfOli Simulator – Parallelization on KNC 

 KNC accelerator card 

 ~60 cores, up to 4 threads per core 
in hardware 

 1 Vectorization Processing Unit per 
core, 512-bit 

 High Bandwidth Ring Interconnect 
between cores 

  
 Intel® Xeon Phi™ Knighs Corner Coprocessor Core 
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InfOli Simulator – Parallelization on KNC 
OpenMP threads, up to 240 on the KNC 

Data Partitioning: 
Each thread handles a subnetwork 

Network is divided as evenly as possible 

Need for data exchange between threads 

Neurons are calculated independently 
Threads operate in parallel 

Each thread vectorizes calculations for more 
parallel neuron processing 
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Transferring to Knights Landing 

64-72 cores, up to 4 threads per core 

2 vectorization units per core 

Mesh interconnect 

On-Chip MCDRAM memory, 
different configurations available 

Cache mode tested and used 
 Intel® Xeon Phi™ Knighs Landing Processor Core 
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Transferring to Knights Landing 
 Out-of-the box measurements from the KNC 
on the KNL.  

 Ease of transferring, only recompilation 
needed 

 KNL vs KNC ? 

Better Single-Threaded Performance (3x 
TFPs)   

More VPUs, better vectorization support 

High-bandwidth MCDRAM 

 Increased amount of cores, maximum 
amount of threads 
 

Intel’s 1st Generation 
Xeon Phi: Knights 
Corner Coprocessor 
Card 

Intel’s 2nd Generation 
Xeon Phi: Knights 
Landing Processor 
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Experimental Evaluation 
Range of Small (1,000) to Large (10,000) neuron networks 

Connectivity densities of 0 (isolated network) to 1,000 GJs per neuron 

Exploration of simulation speed, energy used and thread efficiency 

  

 KNC Model: 3120p 

 KNL Model: 7210 

 Xeon Baseline Model: E5-2609-v2 (4 cores) 
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Results – Execution Time 

Simulation Speed Results on Isolated Neurons 

Simulation Speed measured 
as seconds of Execution time 
needed per second of Simulated 
Brain time  

Values of 1 indicate real-time 
execution 

Isolated neurons do not utilize 
vectorization. 

Xeon CPU is competitive for very 
small workloads 
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Results – Execution Time 
Sparse networks are more serial 
in nature, so they operate well on 
KNL, (superior single-threaded 
performance) 

Xeon CPU is still competitive for 
very small workloads 

Vectorization on the KNC is 
significantly better after a certain 
point. 

KNL has a clear advantage  

 Simulation Speed Results on Low-Density Network 
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Results – Execution Time 
Denser Networks heavily favor 
vectorization-enabled 
implementations 

Vectorization on the KNC is 
significantly better after a certain 
point.  

Xeon CPU inadequate for the 
task as the network is becoming 
bigger 

 KNL has a clear advantage 

Simulation Speed Results on Medium-Density Network 
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Results – Execution Time 
Denser Networks heavily favor 
vectorization-enabled 
implementations 

Vectorization on the KNC is 
significantly better after a certain 
point.  

Xeon CPU still inadequate for the 
task 

KNL’s performance is worse than 
KNC for some of the heaviest 
workloads 

Simulation Speed Results on High-Density Network 
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Results – Energy 

Energy Consumption Results on Isolated Neurons 

Energy Consumption measured 
as mWhs of Energy consumed per 
second of Simulated Brain time  

KNL’s lower TDP leads to 
significant energy gains 
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Results – Energy 
Up to 75% savings on 
Low-density networks after 
transitioning to the KNL 

Gap lessens with higher 
workload 

Simulation Speed Results on Low-Density Network 
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Results – Energy 
KNL’s lower TDP offset by 
increased simulation times 

KNC requires up to 27% less 
mWhs for large and dense 
network simulation 

Point of energy equilibrium at 
~3000 neurons with dense 
interconnectivity (1,000 synapses) 

Gap relatively steady with 
heavier workloads 

Simulation Speed Results on High-Density Network 
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Results – Efficiency 

Efficiency Results on High-Density Network of 1,000 neurons 

Thread Efficiency measured as the 
pure ratio of speedup gained divided by 
the amount of threads used 

KNL displays superior threading 
efficiency 

Both platforms quickly lose over 50% 
in efficiency 

Increasing threads is ineffective for 
boosting simulation speed on a small 
network, specially for the KNC 

KNL very efficient for 1 thread per core 
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Results – Efficiency 

Efficiency Results on High-Density Network of 10,000 neurons 

KNL takes a very significant hit in 
efficiency past 100 threads 

Best practice suggests ~2 threads per 
KNL core 

Past that mark, KNL efficiency 
decreases 

KNL fails to lower simulation times for 
more than 100 thread-usage 

KNC retains acceptable efficiency for 
200 threads 
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Conclusions 
On average, 2.4x speedup, comparable to expected single thread performance 
upgrade of KNL over KNC (3x) 

 

Variation of vectorization and threading efficiency between the two versions 

 

Lower TDP leads to overall energy savings (~50%) on KNL 

 

KNL displays greater predictability in performance 

25 



Future Work 
 

Better optimization for the KNL 
VPU optimal usage 
Thread Efficiency 
 

Exploration of MCDRAM modes 

 

Multinode studies 
Usage of Intel’s Omnipath technology 
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