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The Domain of Neuroscience

**Exploring the functionality of Human Brain

**Mathematical modeling representing neurons,
neuronal networks
**Behavioral experiments

“*Long-term goals (The holy Grail):
Brain Functionality
understanding and
restoration.

TrueNorth, IBM’s Neuromorphic Chip: A brain-
inspired supercomputing chip able to calculate
millions of neuron-models at real time




Problem Complexity
***Detailed models require many FLOPs RRAIN SIZE AND NEURON COUNT

PEr neuron Cerebral cortex mass and neuron count for various mammals.
**Massive networks means many neurons
per network Sem.
**Densely connected networks need .
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**Real-time response is currently bilion bilion bilion bilion bilion
impossible in large-scale, detailed : . . .
simulations Source: Quanta Magazine, How Humans Evolved Supersize Brains




Who elseison it ?

*Europe (Human Brain Project) <*USA (BRAIN Initiative)

“»Japan (Brain/MINDS) “*Korea (Korea Brain Initiative)

Logos of the Human Brain
Project, Europe on the left
and the BRAIN initiative,
U.S.A. on the right




Motivation

Huge potential impact on everyday life
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Motivation

**Quality of Life improvements




InfOli Simulator - Description

Hodgkin-Huxley-based model, biophysically accurate neuron representation of
human Inferior Olivary Nucleus

A Typical Neuron

Tri-compartmental model
**Dendrite: Communication
“*Soma (body): Computation = 1)
* Axon: Output ‘, : \

Terminal Bulb

Gap Junction (GJ) mechanic:
The communication between iy
dendrites in the network A

Simple anatomy of a neuron, display of the three compartments
Iperformance bottleneck!




InfOli Simulator - Description

Time'driven SimUlator non'/inear ¢ Duration of Simulated Brain Activity N
model ’ o —rmesepis— t1 ¢ rmesepo— b2
0 1] _ﬂ
Network connectivity randomly 56 36 36
generated, standard number of GJs (=3 =3 £3
&
p(fr neuron N \Qy 5 - -
**Access dendritic data of neurons ¢ : * : | _
in the GJ Dendrite Dendrite Dendrite
, , v 5& v 5§ v
“*Calculate GJ state, incoming . S = $g =
current in the GJ Soma |lg& | Soma || g¢ | Soma |
v & g ¥ &g I
“*Calculate neuron compartmental ~—— § & ¥
state Axon || Axon | Axon ||

**Record output (e.g. ax. voltage)

The InfOli simulator




INfOli Simulator — Parallelization on KNC

Yeon” Pt Coprocessot

KNC accelerator card

~60 cores, up to 4 threads per core
To On-Die Interconnect IN hardwa re

512b SIMD

U1 T8 and 3240 Data Cache | 1 Vectorization Processing Unit per
‘ core, 512-bit

High Bandwidth Ring Interconnect
between cores

X86 specific logic < 2% of core + L2 area

Intel® Xeon Phi™ Knighs Corner Coprocessor Core




INfOli Simulator — Parallelization on KNC

OpenMP threads, up to 240 on the KNC

Data Partitioning:
**Each thread handles a subnetwork

“*Network is divided as evenly as possible

Need for data exchange between threads

Neurons are calculated independently
**Threads operate in parallel

**Each thread vectorizes calculations for more
parallel neuron processing
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Transferring to Knights Landing

Chip: 36 Tiles interconnected by 2D Mesh
Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW
DDR4: 6 channels @ 2400 up to 384GB
10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset
Node: 1-Socket onl ¢
S s ktony **64-72 cores, up to 4 threads per core

Fabric: Omni-Path on-package (not shown)

36 Tiles
connected by
2D Mesh
Interconnect

Vector Peak Perf: 3+TF DP and 6+TF SP Flops **2 vectorization units per core

Scalar Perf: ~3x over Knights Corner
Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+

Sotmleht dends‘mmsy*mauadigm*ﬁln simi

VMEFEMZ22P>»IN AIQ00 W
NWVrFrMZ22PIN X000 W

**Mesh interconnect

**On-Chip MCDRAM memory,
different configurations available

**Cache mode tested and used

Omni-path not shown

Intel® Xeon Phi™ Knighs Landing Processor Core




Transferring to Knights Landing

Out-of-the box measurements from the KNC

: / st [
@ = Intel’s 1 | Geljrerat/on on the KNL.
Xeon Phi: Knights
Corner Coprocessor Ease of transferring, only recompilation
Card needed
KNL vs KNC ?
*»*Better Single-Threaded Performance (3x
TFPs)
. N
= Intel’s 214 Generation **More VPUs, better vectorization support
Xe0n P Process, Xeon Phi: Knights **High-bandwidth MCDRAM

Landing Processor . .
¢ Increased amount of cores, maximum

amount of threads




Experimental Evaluation

“*Range of Small (1,000) to Large (10,000) neuron networks

*** Connectivity densities of O (isolated network) to 1,000 GJs per neuron

“*Exploration of simulation speed, energy used and thread efficiency

KNC Model: 3120p
KNL Model: 7210
Xeon Baseline Model: E5-2609-v2 (4 cores)




Results — Execution Time
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**Simulation Speed measured

as seconds of Execution time
needed per second of Simulated
Brain time
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**Values of 1 indicate real-time
execution

***Isolated neurons do not utilize
vectorization.
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small workloads
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Simulation Speed Results on Isolated Neurons




Results — Execution Time
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“*Sparse networks are more serial
in nature, so they operate well on
KNL, (superior single-threaded
performance)
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“*Xeon CPU is still competitive for
very small workloads

“*Vectorization on the KNC is
significantly better after a certain
point.

Execution Time per Second of Brain Activity

“*KNL has a clear advantage

Number of Neurons (p.u.)

Simulation Speed Results on Low-Density Network




Results — Execution Time
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“*Denser Networks heavily favor
vectorization-enabled
implementations
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“*Vectorization on the KNC is
significantly better after a certain
point.
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**Xeon CPU inadequate for the
task as the network is becoming
bigger
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Simulation Speed Results on Medium-Density Network




Results — Execution Time
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**Denser Networks heavily favor
vectorization-enabled
implementations
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**Vectorization on the KNC is
significantly better after a certain
point.

**Xeon CPU still inadequate for the
task

Execution Time per Second of Brain Activity

**KNL's performance is worse than
KNC for some of the heaviest
workloads
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Simulation Speed Results on High-Density Network




Results — Energy

<*Energy Consumption measured e ||
as mWhs of Energy consumed per

second of Simulated Brain time

**KNL’s lower TDP leads to
significant energy gains
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Energy Consumption Results on Isolated Neurons




Results — Energy
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Simulation Speed Results on Low-Density Network




Results — Energy

**KNL's lower TDP offset by
increased simulation times

**KNC requires up to 27% less
mWhs for large and dense
network simulation
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***Point of energy equilibrium at
~3000 neurons with dense
interconnectivity (1,000 synapses)

**Gap relatively steady with
heavier workloads
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Simulation Speed Results on High-Density Network




Results — Efficiency

“*Thread Efficiency measured as the o.gag
pure ratio of speedup gained divided by 8:?;
the amount of threads used So06/

3 0.5F

**KNL displays superior threading i oal
efficiency s |
. . No03f

*»*Both platforms quickly lose over 50% O
in efficiency S 02

**Increasing threads is ineffective for
boosting simulation speed on a small

20 40 60 80 100 120 140 160 180 200
Number of Threads

network, specially for the KNC

. ..
“*KNL very efficient for 1 thread per core Efficiency Results on High-Density Network of 1,000 neurons




Results — Efficiency

**KNL takes a very significant hit in
efficiency past 100 threads

***Best practice suggests ~2 threads per
KNL core

***Past that mark, KNL efficiency
decreases

**KNL fails to lower simulation times for
more than 100 thread-usage

**KNC retains acceptable efficiency for
200 threads
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Efficiency Results on High-Density Network of 10,000 neurons




Conclusions

**0On average, 2.4x speedup, comparable to expected single thread performance
upgrade of KNL over KNC (3x)

**Variation of vectorization and threading efficiency between the two versions

**Lower TDP leads to overall energy savings (~50%) on KNL

**KNL displays greater predictability in performance




Future Work

*»*Better optimization for the KNL
“*VPU optimal usage
“*Thread Efficiency

**Exploration of MCDRAM modes

**Multinode studies
***Usage of Intel’s Omnipath technology




