
T. Koskela, J. Deslippe
NERSC / LBNL

tkoskela@lbl.gov

Optimizing

Fusion PIC

Code XGC1

Performance on

Cori Phase 2

- 1 -

June 23, 2017

Thank you to all collaborators!

• LBNL
– Brian Friesen, Ankit Bhagatwala, Mark Adams, Mathieu Lobet,

Tareq Malas, Andrey Ovsyannikov, Kevin Gott

• PPPL
– CS Chang, Robert Hager, Seung-Hoe Ku, Stephane Ethier

• ORNL
– Ed D’Azevedo, Stephen Abbott

• Intel
– Thanh Phung, Zakhar Matveev, John Pennycook, Martyn Corden,

Karthik Raman

• RPI
– Eisung Yoon

- 2 -

XGC1 is a Particle-In-Cell Simulation

Code for Tokamak (Edge) Plasmas

- 3 -

PI: CS Chang (PPPL) | ECP: High-Fidelity Whole Device Modeling of Magnetically Confined Fusion Plasma

Collisional Plasma PIC Code

Flowchart

Collect Fields
from Mesh to

Particles

Particle Push

Collision
Operator

Deposit Charge
From Particles

to Mesh

Solve Fields on
Mesh

- 4 -

Computation
Mapping

XGC1 Unique Optimization

Challenges

• Complicated Toroidal Geometry
– Unstructured mesh in 2D (poloidal) plane(s)

– Nontrivial field-following (toroidal) mapping between meshes

– Typical exascale simulation has 10 000 particles per cell,
1 000 000 cells per domain, 64 toroidal domains.

• Gyrokinetic Equation of Motion in Cylindrical
Coordinates
– + 6D to 5D problem

– + O(100) longer time steps

– -- Higher (2nd) order derivative terms in EoM

– -- Averaging scheme in field gather

• Electron Sub-Cycling

- 5 -

In XGC1 Electron Time Scale is

Separated From the Ion Push in a Sub-

Cycling Loop

Gather Fields
from Mesh to

Ions

Ion Push

Collision
Operator

Deposit Charge
From Particles

to Mesh

Solve Fields on
Mesh

- 6 -

Computation
Mapping

Electron Push

Sub-Cycling

push electrons without

updating fields or collisions

–only field gather and push

~50x

Motivation: XGC1 CPU time is

dominated by electron push sub-cycle

- 7 -

Baseline XGC1 Timing on 1024 Cori KNL nodes in quadrant flat mode.

Motivation: Ideal Strong Scaling of

Electron Sub-Cycling On Cori

- 8 -

Cori KNL quadrant cache nodes, 16 MPI ranks per node/16 OpenMP threads per rank

(Simplified) Particle Push Algorithm

- 9 -

1. Search for nearest 3
mesh nodes to the
particle position

2. Interpolate fields from
3 mesh points to
particle position

3. Calculate force on
particle from fields

4. Push particle for time
step dt

Main Bottlenecks in Electron Push

• E and B Field Interpolation

– Inner loops over nearby grid nodes with short trip counts
make auto-vectorization ineffective

– Indirect grid access produces gather/scatter instructions

• Search on Unstructured Mesh

– Multiple exit conditions

• Force Calculation

– Strided memory access in complicated data types

– Cache unfriendly

- 10 -

Main Optimizations in Electron Push

• Enabling Vectorization
– Insert loops over blocks of particles inside short trip count

loops

– Sort particles to reduce random memory accesses

• Data Structure Reordering
– Store field and particle data in SoA format.

– SoA best when accessing multiple components with a
gather instruction

• Algorithmic Improvements
– Sort particles by the mesh element index instead of local

coordinates

– Reduce number of unnecessary calls to the search routine

- 11 -

Re-Ordering Loops to Enable

Vectorization

Scalar code Vectorized code

- 12 -

Loop Over Time Steps

Short loop over nearby nodes

Loop Over All Particles
Loop Over Time Steps

Loop Over Blocks of Particles

Sort Particles

Loop over Particles in Block

Short loop over nearby nodes

• Sort particles to reduce random memory access

• Swap the order of time step and particle loops to improve cache reuse

• Insert vectorizeable loop over blocks of particles inside short trip count loop

• Near-ideal vectorization in compute-heavy loops
 Indirect memory access becomes the bottleneck

Reorder Particle Data Structures

AoS
type field
 real :: Bx,By,Bz
 real :: Ex,Ey,Ez

 ...

end type

type(field) :: fld(number_of_particles)

SoA
type field_vec
 real :: Bx(number_of_particles)
 real :: By(number_of_particles)
 real :: Bz(number_of_particles)
 ...

end type

type(field_vec) :: fld

- 13 -

• Stores field data at particle location between field gather and particle push
• AoS  Strided access when accessing one data type of multiple particles
• SoA  Unit Stride when accessing one data type of multiple particles

Reorder Particle Data Structures

AoS
type field
 real :: Bx,By,Bz
 real :: Ex,Ey,Ez

 ...

end type

type(field) :: fld(number_of_particles)

SoAoS
type field_vec
 real :: B(3,number_of_particles)
 real :: E(3,number_of_particles)

 ...

end type

type(field_vec) :: fld

- 14 -

• Stores field data at particle location between field gather and particle push
• AoS  Strided when accessing one data type of multiple particles
• SoAoS  Retrieve all components of a vector field on the same cache line

Roofline Performance Model

- 15 -

A
tt

a
in

a
b

le
 P

e
rf

o
rm

a
n

c
e

 (
G

fl
o

p
s
/s

)

FMA+SIMD

FMA

Arithmetic Intensity (flops/byte)

Memory

Bandwidth

Bound

Compute

Bound

Scalar

Memory

Bandwidth/

Compute

Bound

Arithmetic

Intensity
=

Total Flops computed

Total Bytes transferred from

DRAM

Roofline reflects an absolute performance bound (Gflops/s) of the system

as a function of Arithmetic Intensity (flops/byte) of the application.

Roofline Analysis for Electron Push

Kernel, KNL quadrant cache node

Scalar add peak

Vector add peak

Single thread
performance on KNL

3x Speedup achieved

Large increase in AI
from blocking/sorting

Optimized
performance still 10x
below vector peak, AI
is high enough to
reach it.

Electron Push Speedup

- 17 -

XGC1 Timing on 1024 Cori KNL nodes in quadrant flat mode.

3x

Strong Scaling Parameters

Compute Nodes Grid Nodes Per Rank Particles Per Rank

256 448 12.2 M

512 224 6.1 M

1024 112 3.1 M

2048 56 1.5 M

4096 28 0.75 M

- 18 -

• 16 MPI ranks per Node, 16 OpenMP Threads per rank
• 5 Bn total particles
• 57 000 total grid nodes per plane, 32 planes
• Quadrant Cache mode

XGC1 Strong Scaling up to 4096 KNL

Nodes

- 19 -

 16 MPI ranks per node,
16 OpenMP threads per
rank.

Strong scaling for
problem size of 25 Bn
particles, grid
representative of present
production runs (DIII-D
tokamak)

Ideal Scaling in electron
push

30% scaling deficit in
main loop at 4096 nodes
(half machine size)

Particle Weak Scaling Parameters

Compute Nodes Grid Nodes Per Rank Particles Per Rank

32 3584 0.4 M

64 1792 0.4 M

128 896 0.4 M

256 448 0.4 M

512 224 0.4 M

1024 112 0.4 M

2048 56 0.4 M

- 20 -

• 16 MPI ranks per Node, 16 OpenMP Threads per rank
• 57 000 total grid nodes per plane, 32 planes
• Quadrant Cache mode

XGC1 “Weak Scaling” Up to 2048 KNL

Nodes

- 21 -

Weak Scaling in particle
structure size for fixed
grid size

Grid representative of
present production runs
(DIII-D tokamak)

60-70% of time in
electron push

Slowdown from 32 to
2048 nodes: 20%

~50% slowdown at full
machine size (9600
nodes) by extrapolation

Particle Weak Scaling Parameters

Compute
Nodes

Grid Nodes Per
Rank

Total Grid
Nodes

Particles Per
Rank

Total Particles

32 470 7 500 0.4 M 200 M

64 470 15 000 0.4 M 400 M

128 470 30 000 0.4 M 800 M

256 470 60 000 0.4 M 1600 M

512 470 120 000 0.4 M 3200 M

1024 470 240 000 0.4 M 6400 M

2048 470 15 M 0.4 M 12800 M

- 22 -

• 16 MPI ranks per Node, 16 OpenMP Threads per rank
• Quadrant Cache mode

XGC1 Weak Scaling

- 23 -

Weak Scaling in particle
structure and grid size

Slowdown from 32 to
2048 nodes: 150%

XGC1 Weak Scaling

- 24 -

Weak Scaling in particle
structure and grid size

Slowdown from 32 to
2048 nodes: 150%

Poisson solver mostly
responsible for poor
scaling

Combination of PETSc
library solver and MPI
scatter calls

Summary And Conclusions

• Optimizations have improved vectorization and memory access
patterns in XGC1 electron push kernel
– Approximately 3x gained in total performance
– Optimized electron push kernel has roughly equal per-node performance

on KNL and Haswell

• Optimization efforts have been focused using roofline analysis
– Focus on enabling vectorization, do not worry about memory bandwidth
– Theoretically still room for ~10x improvement, what is limiting

performance?
• Memory latency, Memory alignment, Integer operations, Type conversions, ...

• XGC1 strong scaling is satisfactory for moderate problem size.
• The large number of slow cores on KNL has exposed poor weak

scaling when pushing towards a large problem size.
– Poisson solver has been identified as the main bottleneck.
– Work is ongoing to resolve the issue.

- 25 -

Backup Slides

- 26 -

Single node thread scaling of electron

push kernel

- 27 -

Performance gain from
MCDRAM only when
using more than 2
threads/core  KNL
outperforms Haswell
node when all logical
threads are used

KNL: 64 physical cores/4
hyper threads
Haswell: 32 physical
cores/2 hyper threads

KMP_AFFINITY=compact
KMP_PLACE_THREADS=1
T (N <= 64)
2T (N == 128)
4T (N == 256)
OMP_NUM_THREADS=N

Wall Time – Lower is better

1 Node, 4 MPI ranks per node

Full Production Code Preliminary

Performance Results

• Ratio of KNL to Haswell
performance with 1
thread/core (64 to 32) is
in line with kernel
results (~2x in favor of
Haswell)

• Gain from hyper-
threading is less
significant than in
kernel results

• Compiler and system
bugs encountered at
large scale, ongoing
work to resolve

- 28 -

Wall Time – Lower is better

16 Nodes, 4 MPI ranks per node

