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XGCl1 is a Patrticle-In-Cell Simulation
Code for Tokamak (Edge) Plasmas
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Collisional Plasma PIC Code
Flowchart
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XGC1 Unique Optimization
Challenges

 Complicated Toroidal Geometry
— Unstructured mesh in 2D (poloidal) plane(s)
— Nontrivial field-following (toroidal) mapping between meshes

— Typical exascale simulation has 10 000 particles per cell,
1 000 000 cells per domain, 64 toroidal domains.

e @Gyrokinetic Equation of Motion in Cylindrical
Coordinates
— + 6D to 5D problem
— + 0(100) longer time steps
— -- Higher (2nd) order derivative terms in EoM
— -- Averaging scheme in field gather

* Electron Sub-Cycling
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Separated From the lon Push in a Sub-

Cycling Loop
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Electron Push
Sub-Cycling

push electrons without
updating fields or collisions
—only field gather and push
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Motivation: XGC1 CPU time is
dominated by electron push sub-cycle

@ Electron Push
& lon Push

@ Electron Charge
@ lon Charge

@ Poisson Solve
@ Collision

@ Particle Shift

Baseline XGC1 Timing on 1024 Cori KNL nodes in quadrant flat mode.
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Motivation: Ideal Strong Scaling of
Electron Sub-Cycling On Cori
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Cori KNL quadrant cache nodes, 16 MPI ranks per node/16 OpenMP threads per rank
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(Simplified) Particle Push Algorithm

Search for nearest 3
mesh nodes to the
particle position

Interpolate fields from
3 mesh points to
particle position

. Calculate force on
particle from fields

Push particle for time
step dt




Main Bottlenecks in Electron Push

* E and B Field Interpolation

— Inner loops over nearby grid nodes with short trip counts
make auto-vectorization ineffective

— Indirect grid access produces gather/scatter instructions

e Search on Unstructured Mesh
— Multiple exit conditions

* Force Calculation
— Strided memory access in complicated data types
— Cache unfriendly

Office of

AR, U-S. DEPARTMENT OF

& 2\

s ‘ . -10-
3 ENERGI Science




Main Optimizations in Electron Push m

* Enabling Vectorization

— Insert loops over blocks of particles inside short trip count
loops

— Sort particles to reduce random memory accesses
e Data Structure Reordering

— Store field and particle data in SoA format.

— SoA best when accessing multiple components with a
gather instruction

* Algorithmic Improvements

— Sort particles by the mesh element index instead of local
coordinates

— Reduce number of unnecessary calls to the search routine
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Re-Ordering Loops to Enable
Vectorization

Scalar code Vectorized code

iﬂi@iﬁﬁﬁ

oop Over BIOCKS oT Farticles

W

||
Loop over Particles in Block

* Swap the order of time step and particle loops to improve cache reuse

Short loop over nearby nodes

* Sort particles to reduce random memory access

* Insert vectorizeable loop over blocks of particles inside short trip count loop

* Near-ideal vectorization in compute-heavy loops

- Indirect memory access becomes the bottleneck
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Reorder Particle Data Structures

AoS SOA
type field type field_vec
real :: Bx,By,Bz real :: Bx(number_of_particles)
real :: Ex,Ey,Ez real :: By(hnumber_of_particles)

real :: Bz(humber_of_particles)
end type end type

type(field) :: fld(number_of particles) type(field_vec) :: fid

* Stores field data at particle location between field gather and particle push
* AoS - Strided access when accessing one data type of multiple particles
* SoA - Unit Stride when accessing one data type of multiple particles
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Reorder Particle Data Structures

AoS SoAo0S
type field type field_vec
real :: Bx,By,Bz real :: B(3,number_of_particles)
real :: Ex,Ey,Ez real :: E(3,number_of_particles)
end type end type
type(field) :: fld(number_of_particles) type(field_vec) :: fid

* Stores field data at particle location between field gather and particle push
* AoS - Strided when accessing one data type of multiple particles
* SoAoS > Retrieve all components of a vector field on the same cache line
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Roofline Performance Model

Roofline reflects an absolute performance bound (Gflops/s) of the system
as a function of Arithmetic Intensity (flops/byte) of the application.
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Roofline Analysis for Electron Push
Kernel, KNL quadrant cache node

GFLOP/s
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Electron Push Speedup
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XGC1 Timing on 1024 Cori KNL nodes in quadrant flat mode.
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Strong Scaling Parameters

Compute Nodes Grid Nodes Per Rank Particles Per Rank

256 448 12.2 M
512 224 6.1 M
1024 112 3.1M
2048 56 1.5M
4096 28 0.75M

16 MPI ranks per Node, 16 OpenMP Threads per rank
* 5 Bn total particles

57000 total grid nodes per plane, 32 planes

* Quadrant Cache mode
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XGC1 Strong Scaling up to 4096 KNL
Nodes

10000 . .
: | @@ Main Loop 16 MPI ranks per node,

®-® Electron Push| 16 OpenMP threads per
: | rank.

Strong scaling for
problem size of 25 Bn
particles, grid
representative of present
production runs (DIlI-D
tokamak)
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Particle Weak Scaling Parameters

Compute Nodes Grid Nodes Per Rank Particles Per Rank

32 3584 0.4 M
64 1792 0.4 M
128 896 04 M
256 448 0.4 M
512 224 04 M
1024 112 04 M
2048 56 04 M

16 MPI ranks per Node, 16 OpenMP Threads per rank
57 000 total grid nodes per plane, 32 planes
e Quadrant Cache mode
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XGC1 "Weak Scaling” Up to 2048 KNL

Nodes
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Weak Scaling in particle
structure size for fixed
grid size

Grid representative of
present production runs
(DII-D tokamak)

60-70% of time in
electron push

Slowdown from 32 to
2048 nodes: 20%

~50% slowdown at full
machine size (9600
nodes) by extrapolatj




Particle Weak Scaling Parameters

Compute Grid Nodes Per | Total Grid Particles Per Total Particles
Nodes Rank Nodes Rank

7 500 04 M 200 M
64 470 15 000 04 M 400 M
128 470 30 000 0.4 M 800 M
256 470 60 000 04 M 1600 M
512 470 120 000 04 M 3200 M
1024 470 240 000 04 M 6400 M
2048 470 15 M 04 M 12800 M

16 MPI ranks per Node, 16 OpenMP Threads per rank
e Quadrant Cache mode
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XGC1 Weak Scaling
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XGC1 Weak Scaling
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Poisson solver mostly
responsible for poor
scaling
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Summary And Conclusions

Optimizations have improved vectorization and memory access
patterns in XGC1 electron push kernel
— Approximately 3x gained in total performance

— Optimized electron push kernel has roughly equal per-node performance
on KNL and Haswell

e Optimization efforts have been focused using roofline analysis
— Focus on enabling vectorization, do not worry about memory bandwidth

— Theoretically still room for ~10x improvement, what is limiting
performance?
 Memory latency, Memory alignment, Integer operations, Type conversions, ...

* XGC1 strong scaling is satisfactory for moderate problem size.
* The large number of slow cores on KNL has exposed poor weak
scaling when pushing towards a large problem size.
— Poisson solver has been identified as the main bottleneck.
— Work is ongoing to resolve the issue.
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Single node thread scaling of electron
push kernel

1 Node, 4 MPI ranks per node
Performance gain from

. ! [ MCDRAM only when

I
o—e KNL, SNC4, MCDRAM using more than 2
256 | =—a KNL, SNC4, DDR 1 threads/core = KNL
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128L. ™. ... ... |=-m KNL, Quadflat, DDR 4 node when a|||0gica|
¥—¥ KNL, Quadcache threads are used
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KNL: 64 physical cores/4
hyper threads

; Haswell: 32 physical
cores/2 hyper threads
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Exec. time per time step (s)

Full Production Code Preliminary
Performance Results

16 Nodes, 4 MPI ranks per node e Ratio of KNL to Haswell

performance with 1
thread/core (64 to 32) is
in line with kernel
results (~2x in favor of
Haswell)

256 || V¥ KNL, Quadcache
Ye—3¢ Haswell

sl WallTime - Lower is better

* Gain from hyper-
threading is less

: : | : significant than in

% kernel results

| | | : * Compiler and system
) R SRS SR S bugs encountered at
5 | | 5 large scale, ongoing
work to resolve
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