
On the Mitigation of Cache 
Hostile Memory Access Patterns 
on Many-core CPU Architectures 

Tom Deakin, Simon McIntosh-Smith: University of Bristol

Acknowledgements: John Pennycook, Andy Mallinson: Intel Corporation 
Thanks for Cray Inc. for access to the Cray XC40 Supercomputer “Swan” 
The University of Bristol is an Intel Parallel Computer Center



Stencil patterns
5-point stencil

• Reads data from (i±1, j±1) 

• Used in lots of finite difference codes (e.g. Lattice 
Boltzmann) 

Upwinded 5-point stencil

• Reads data from (i-1,j-1) 

• Writes data to (i+1, j+1) 

• Used in for e.g. LU factorisation, deterministic 
transport 

• Results in sweep across mesh

(a) Structured mesh (b) Upwinded sweep

Fig. 1: Applications of a typical 5-point stencil

and (i, j � 1), and the edge centred solutions in cell (i, j) are required by cells
(i+ 1, j) and (i, j + 1).

The data dependency is formed by upwinding whilst discretizing a partial
differential equation in the spatial domain. It results in a wavefront sweep, an
important programming pattern which appears in a variety of applications such
as dynamic programming, LU factorisation and deterministic transport [7, 10].

The available parallelism is also different compared to a standard application
of the stencil. The cells must now be computed in the order defined by the
sweep; this is in contrast to the mesh in Fig. 1a where the cells can be computed
concurrently as long as a copy of cell centred values is stored. Solution on a large
distributed system also uses a standard halo exchange communication pattern
for the standard approach, whereas outgoing edge data is sent to downwind
neighbours as it becomes available here. The focus of this paper is the on node
performance and so communication differences will not be discussed further.

Because the edge centred values are temporary, and only half are required to
share between neighbouring cells, it is typical to optimise the memory footprint
and store the incoming and outgoing edge values in the same memory location.
This reduces the memory footprint and also encourages reuse of array elements.

The descriptions in the 2D case are analogous in three dimensions using a
seven-point stencil, and it is the 3D case that we investigate in this paper.

3 Memory Access Patterns

The generalised memory access pattern of the upwinded stencil may be described
as follows. Multiple values are calculated per cell, which are operated on in
parallel through vectorisation, and are hence stored contiguously as the inner
most dimension within the mesh array to allow for simple stride 1 memory
access patterns.

The cell centred solution computation is somewhat similar to a STREAM
Triad operation [8] and is calculated based on its previous value along with

(a) Structured mesh (b) Upwinded sweep

Fig. 1: Applications of a typical 5-point stencil

and (i, j � 1), and the edge centred solutions in cell (i, j) are required by cells
(i+ 1, j) and (i, j + 1).

The data dependency is formed by upwinding whilst discretizing a partial
differential equation in the spatial domain. It results in a wavefront sweep, an
important programming pattern which appears in a variety of applications such
as dynamic programming, LU factorisation and deterministic transport [7, 10].

The available parallelism is also different compared to a standard application
of the stencil. The cells must now be computed in the order defined by the
sweep; this is in contrast to the mesh in Fig. 1a where the cells can be computed
concurrently as long as a copy of cell centred values is stored. Solution on a large
distributed system also uses a standard halo exchange communication pattern
for the standard approach, whereas outgoing edge data is sent to downwind
neighbours as it becomes available here. The focus of this paper is the on node
performance and so communication differences will not be discussed further.

Because the edge centred values are temporary, and only half are required to
share between neighbouring cells, it is typical to optimise the memory footprint
and store the incoming and outgoing edge values in the same memory location.
This reduces the memory footprint and also encourages reuse of array elements.

The descriptions in the 2D case are analogous in three dimensions using a
seven-point stencil, and it is the 3D case that we investigate in this paper.

3 Memory Access Patterns

The generalised memory access pattern of the upwinded stencil may be described
as follows. Multiple values are calculated per cell, which are operated on in
parallel through vectorisation, and are hence stored contiguously as the inner
most dimension within the mesh array to allow for simple stride 1 memory
access patterns.

The cell centred solution computation is somewhat similar to a STREAM
Triad operation [8] and is calculated based on its previous value along with



Computational kernel

1. Calculate cell centred values 

2. Calculate outgoing face values 

3. Reduce cell centred values within each cell 

• All operations have low computational intensity 

• Sit in the memory bandwidth bound section in the Roofline model

(a) Structured mesh (b) Upwinded sweep

Fig. 1: Applications of a typical 5-point stencil

and (i, j � 1), and the edge centred solutions in cell (i, j) are required by cells
(i+ 1, j) and (i, j + 1).

The data dependency is formed by upwinding whilst discretizing a partial
differential equation in the spatial domain. It results in a wavefront sweep, an
important programming pattern which appears in a variety of applications such
as dynamic programming, LU factorisation and deterministic transport [7, 10].

The available parallelism is also different compared to a standard application
of the stencil. The cells must now be computed in the order defined by the
sweep; this is in contrast to the mesh in Fig. 1a where the cells can be computed
concurrently as long as a copy of cell centred values is stored. Solution on a large
distributed system also uses a standard halo exchange communication pattern
for the standard approach, whereas outgoing edge data is sent to downwind
neighbours as it becomes available here. The focus of this paper is the on node
performance and so communication differences will not be discussed further.

Because the edge centred values are temporary, and only half are required to
share between neighbouring cells, it is typical to optimise the memory footprint
and store the incoming and outgoing edge values in the same memory location.
This reduces the memory footprint and also encourages reuse of array elements.

The descriptions in the 2D case are analogous in three dimensions using a
seven-point stencil, and it is the 3D case that we investigate in this paper.

3 Memory Access Patterns

The generalised memory access pattern of the upwinded stencil may be described
as follows. Multiple values are calculated per cell, which are operated on in
parallel through vectorisation, and are hence stored contiguously as the inner
most dimension within the mesh array to allow for simple stride 1 memory
access patterns.

The cell centred solution computation is somewhat similar to a STREAM
Triad operation [8] and is calculated based on its previous value along with



Memory access patterns
• Multiple cell centred values in each cell 

• Store as inner-most dimension - stride 1 in large mesh array 

• Compiler auto-vectorisation 

• A few FMAs; 1 flop/double 

• Stream through large mesh, no reuse 

• Edge values calculated via finite difference (1 FMA) 

• Perform local SIMD reduction in each cell



Caches
Intel Xeon E5-2699v4 Processor (Broadwell)

• L1 and L2 per core, 32 KB and 256 KB 

• L3 per socket, 55 MB 

Intel Xeon Phi 7210 Processor (Knights Landing)

• L1 per core, 32 KB 

• L2 per tile, 1 MB 

• No L3



The mega-stream 
benchmark

• Small benchmark code 

• Easy to model (estimate) the memory bandwidth 

• Distilled from the main kernel in SNAP mini-app 

• Performance proxy for a deterministic transport 
code 

• Motivation: Investigate performance issues of 
SNAP on Knights Landing



#pragma omp parallel for

for (int m = 0; m < Nm; m++) {

for (int l = 0; l < Nl; l++) {

for (int k = 0; k < Nk; k++) {

for (int j = 0; j < Nj; j++) {

double total = 0.0;

#pragma omp simd reduction(+:total)

for (int i = 0; i < Ni; i++) {

/* Set r */

r[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)] =

q[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)] +

a[i] * x[IDX4(i,j,k,m,Ni,Nj,Nk)] +

b[i] * y[IDX4(i,j,l,m,Ni,Nj,Nl)] +

c[i] * z[IDX4(i,k,l,m,Ni,Nk,Nl)];

/* Update x, y and z */

x[IDX4(i,j,k,m,Ni,Nj,Nk)] =

0.2*r[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)] - x[IDX4(i,j,k,m,Ni,Nj,Nk)];

y[IDX4(i,j,l,m,Ni,Nj,Nl)] =

0.2*r[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)] - y[IDX4(i,j,l,m,Ni,Nj,Nl)];

z[IDX4(i,k,l,m,Ni,Nk,Nl)] =

0.2*r[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)] - z[IDX4(i,k,l,m,Ni,Nk,Nl)];

/* Reduce over Ni */

total += r[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)];

} /* Ni */

sum[IDX4(j,k,l,m,Nj,Nk,Nl)] += total;

} /* Nj */

} /* Nk */

} /* Nl */

} /* Nm */

Outgoing face 
calculation

Within cell 
reduction

Cell centre 
calculation



Experimental setup
• Intel® Xeon Phi™ 7210 Processor (Knights Landing) 

• DAP “Ninja” workstation 

• 1.30 GHz, 1.6 GHz mesh, 6.4 GT/s 

• 16 GB MCDRAM, Quad/Flat, 96 GB DDR (unused) 

• CentOS 7.2, XPPSL 1.5.1 

• Intel Compiler 17 update 2, -O3 -xMIC-AVX512 

• Intel® Xeon® E5-2699 v4 Processor (Broadwell) 

• 22-cores, dual-socket, 2.2 GHz, 128 GB DDR 

• Cray XC40 node 

• Intel Compiler 17 update 1, -O3 -xCORE-AVX2
Ni 128

Nj, Nk, Nl 16
Nm 64

Default problem



Performance

• Broadwell quite low, but not low enough to necessarily cause concern 

• Knights Landing performance very low from MCDRAM 

• But the code is already good! 

• Stride one access, vectorises, predictable access, etc

Broadwell Knights Landing 
(MCDRAM)

Bandwidth % Triad Bandwidth % Triad

Baseline 83 GB/s 65.1% 74 GB/s 16.4%





Improving performance
1. Ensure data which is not re-used is not in cache 

• Non-temporal stores 

2. Ensure data which is re-used is in cache 

• Cache blocking 

3. Ensure data is in the cache in time for use 

• Software prefetch



Non-temporal stores
• Store on Intel architectures typically does a “Read 

for Ownership” 

• Reads from memory into cache, then writes to 
cache (and through to main memory) 

• Streaming stores avoid read for ownership 

• Prevents cache pollution 

#pragma vector nontemporal(r)



Performance

• 1.3X improvement on Broadwell 

• 3X improvement on Knights Landing

Broadwell Knights Landing (MCDRAM)

Bandwidth % Triad Bandwidth % Triad

Baseline 83 GB/s 65.1% 74 GB/s 16.4%

Non-temporal 
stores 107 GB/s 83.7% 240 GB/s 53.6%



Cache blocking
• Reuse of x,y,z arrays, the incoming/outgoing edge arrays 

• Want to be kept in cache (temporal locality) 

• For default problem size, there arrays are 256 KiB per core 

• Total 768 KiB, but only 512 KB of L2 cache on Knights 
Landing 

• Split inner (Ni) dimension into blocks of 8 (one cache line) 

• Only need one cache line per array for j,k,l loops, which 
frees up cache



Performance

• 1.3X improvement on Knights Landing 

• Edge arrays already fit in L3 cache on Broadwell, so only 
small improvement

Broadwell Knights Landing (MCDRAM)

Bandwidth % Triad Bandwidth % Triad

Baseline 83 GB/s 65.1% 74 GB/s 16.4%

Non-temporal 
stores 107 GB/s 83.7% 240 GB/s 53.6%

Cache 
blocking 117 GB/s 91.8% 318 GB/s 71.0%



Software prefetching
• Intel vTune Amplifier XE shows L2 cache misses for loading the q 

array (previous iteration cell centred values) 

• Should just be streaming through this array, but hardware 
prefetcher not sufficient 

• Turn on software prefetching (-qopt-prefetch=3) and see initial 
distance 

• Add intrinsic and try distances until see improvement 

• Switch to VLA syntax so compiler can calculate offset index 

__mm_prefetch((const char *) &q[m][g][l][k][j][0] + 
32*VLEN, _MM_HINT_T1);



Performance

• Hurts Broadwell, hardware prefetcher more 
sophisticated than Knights Landing

Broadwell Knights Landing (MCDRAM)

Bandwidth % Triad Bandwidth % Triad

Baseline 83 GB/s 65.1% 74 GB/s 16.4%
Non-temporal 

stores 107 GB/s 83.7% 240 GB/s 53.6%

Cache 
blocking 117 GB/s 91.8% 318 GB/s 71.0%

Software 
prefetch 109 GB/s 85.6% 349 GB/s 77.9%



#pragma omp parallel for

for (int m = 0; m < Nm; m++) {

for (int g = 0; g < Ng; g++) {

for (int l = 0; l < Nl; l++) {

for (int k = 0; k < Nk; k++) {

for (int j = 0; j < Nj; j++) {

double total = 0.0;

_mm_prefetch((const char*) (&q[m][g][l][k][j][0] + 32*VLEN), _MM_HINT_T1);

#pragma vector nontemporal(r)

#pragma omp simd reduction(+:total) aligned(a,b,c,x,y,z,r,q:64)

for (int v = 0; v < VLEN; v++) {

/* Set r */

r[m][g][l][k][j][v] =

q[m][g][l][k][j][v] +

a[g][v] * x[m][g][k][j][v] +

b[g][v] * y[m][g][l][j][v] +

c[g][v] * z[m][g][l][k][v];

/* Update x, y and z */

x[m][g][k][j][v] = 0.2*r[m][g][l][k][j][v] - x[m][g][k][j][v];

y[m][g][l][j][v] = 0.2*r[m][g][l][k][j][v] - y[m][g][l][j][v];

z[m][g][l][k][v] = 0.2*r[m][g][l][k][j][v] - z[m][g][l][k][v];

/* Reduce over Ni */

total += r[m][g][l][k][j][v];

} /* VLEN */

sum[m][l][k][j] += total;

} /* Nj */

} /* Nk */

} /* Nl */

} /* Ng */

} /* Nm */





Summary
• Memory bandwidth bound kernels should be 

memory bandwidth bound 

• Sometimes sensible, stride 1 access and 
vectorisation isn’t enough if caches aren’t being 
utilised as expected 

• Examine cache behaviour, back of envelope 
calculations help



References
• Mega-stream: https://github.com/UK-MAC/mega-stream 

• SNAP: https://github.com/lanl/snap 

• GPU SNAP publications: 

[1] T. Deakin, S. McIntosh-Smith, M. Martineau, and W. Gaudin, “An 
improved parallelism scheme for deterministic discrete ordinates 
transport,” Int. J. High Perform. Comput. Appl., Sep. 2016. 

[2] T. Deakin, S. McIntosh-Smith, and W. Gaudin, “Many-Core 
Acceleration of a Discrete Ordinates Transport Mini-App at Extreme 
Scale,” in High Performance Computing: 31st International Conference, 
ISC High Performance 2016, Frankfurt, Germany, June 19-23, 2016, 
Proceedings, M. J. Kunkel, P. Balaji, and J. Dongarra, Eds. Cham: 
Springer International Publishing, 2016, pp. 429–448.

https://github.com/UK-MAC/mega-stream
https://github.com/lanl/snap

