KART — Kernel compilation At RunTime
for Improving HPC Application Performance

Matthias Noack (noack®@zib.de), Florian Wende, Georg Zitzlsberger,
Michael Klemm, Thomas Steinke

AlB

Zuse Institute Berlin

Distributed Algorithms and Supercomputing

2017-06-22 IXPUG Workshop at ISC'17

/25

Problem

Information that could dramatically improve compiler optimisation, i.e.
application runtime, is not available at compile-time.

2/25

Motivation

Real-World Example ...

... from porting an OpenCL kernel to OpenMP
SIMD vectorisation = AoSoA memory layout = complex index computations

// in a loop nest: group_id (parallel), local_id (simd), i, j, k
sigma_out [group_id * VEC_LENGTH * 2 * DIM * DIM + 2 *x VEC_LENGTH =
(DIM * i + j) + local_id]

without the input runtime-constant DIM the compiler does not recognise the
contiguous memory accesses pattern = gather/scatter SIMD loads/stores

defining DIM at compile-time yields contiguous loads/stores = up to 2.6x

25

Problem

Information that could dramatically improve compiler optimisation, i.e.
application runtime, is not available at compile-time.

= dependant on runtime constants
= e.g. input data, number of nodes in a job, partitioning, data layouts, etc.
=- conditional elimination, loop transformation, memory access optimisation, ...

= enable/improve SIMD vectorisation

Problem

Information that could dramatically improve compiler optimisation, i.e.
application runtime, is not available at compile-time.

= dependant on runtime constants
= e.g. input data, number of nodes in a job, partitioning, data layouts, etc.

=- conditional elimination, loop transformation, memory access optimisation, ...

= enable/improve SIMD vectorisation
Solutions?

a) at application compile time
= recompile code for a specific runtime scenario (input)
= pre-generate code versions for a possible parameter space
b) defer compilation of kernels (i.e. hotspots) until application runtime

= OpenCL does that by design (for hardware portability)
= CUDA since recently via NVRTC extension
= OpenMP (and others) cannot

Design Space

A. Recompile Everything
= process input somehow at build time

= use data for compilation

v no runtime compilation complexity

v cross module optimisation

recompilation of non hot-spots

large time overhead for large codes

X input-data needs to be processed at

build time
= typically a task of the compiled code

no binary releases

Design Space

B. Pre-instantiate Code for all Cases
= generate code variants for sets of relevant parameters and select at runtime
= e.g. template value-parameter specialisation
= fall-back default implementation
= performed by some compilers

= e.g. vectorised (masked/unmasked, ...) and non-vectorised loop/function versions
v no runtime compilation complexity x limited to small, discrete parameter
v’ uses application code for input domains
processing % limited to a small number of such
parameters

X increased size of generated code

25

Design Space

C. Call a Compiler Library at Runtime

= compile hotspot code at runtime using a suitable library

= OpenCL (intended for portability, own kernel language and runtime)

= LLVM

V' uses application code for input
processing

v not limited by number of
parameters/domains

X runtime overhead for compilation

x limited to the capabilities of the
chosen library (i.e. LLVM)

= LLVM lacks SIMD math functions
x porting to OpenCL is a major effort

Design Space

D. Call an Arbitrary Compiler at Runtime
= call a command line toolset
= GCC, Clang/LLVM, Intel, Cray, ...
= create and load shared library

V' uses application code for input x larger runtime overhead for
processing compilation

v not limited by number of
parameters/domains

v’ use capabilities of any command line
toolset

= model of choice

25

KART

Library: KART - Kernel-compilation At RunTime

= provide means for runtime compilation and invocation of arbitrary functions

API for C, C+, and Fortran (implemented in modern C++)

API similar to OpenCL, serves as a drop-in replacement for OpenMP applications
= use any compiler like on the command line

= LLVM/JIT is not enough
= need specific vendor optimisations (Intel, Cray, ...)
= maximum flexibility

=- enables compiler optimisations based on runtime-data
= conditionals, loops, memory access, vectorisation, ...

KART API concepts

= program = kernel_ptr
= created frc_>m source code = type-safe callable template
= can be built = can be used like any
= contains kernels function

= toolset

= config files:

[compiler]

exe=/usr/bin/g++
options-always=-c -fPIC
options-default=-g -std=c++11 -Wall

[linker]

exe=/usr/bin/g++
options-always=-fPIC -shared
options-default=-g -Wall

= export KART_DEFAULT_TOOLSET=gcc.kart

10/25

KART API

toolset

toolset(const string& config_file_name) 4

get_compiler_options() : const string& Rerpernt

set_compiler_options(const string&) : void
append_compiler_options(const string&) : void

operator(Args...) : Ret

get_linker_options() : const string&
set_linker_options(const string&) : void 0.*
append_linker_options(const string&) : void

1

program

program(const string& src)
create_from._file(const std::string& file_name) : program
create_from_binary(const std::string& file_name) : program

build(const toolset& ts) : void
rebuild(const toolset& ts) : void
get_build_log() : const string&

get_kernel(Sig_T)(const std::string& name) : Sig-T
get_kernel_ptr(Sig_T)(const std::string& name) : kernel_ptr(...)
get_binary_file_name() : const std::string&

11/25

KART Implementation

/l kernel call site

kernel_foo = get_kernel(...);

@kernel,foo(.)

@

dynamic
symbols

kernel_foo

KART

application
N N
comp.
app. -

: time
nput consts
e
1 Kermet kernel

1 source - - - >
: files : sources
[T 1

@

i

loaded

®

library

—»(compiler)—{ linker)—»

dynamic
library

12/25

KART C+ example

// original function
double my_kernel (double a,
{ return a » b » CONST; }

double b)

int main (int argc, charxx argv)

{

/* ... application code ... */

// call the kernel as usual
double res = my_kernel (3.0, 5.0);

/* ... application code ... %/

13/25

KART C+ example

#include "kart/kart.hpp"

// signature type

using my_kernel t = double (x) (double,
// raw string literal with source
const char my_kernel src[] = R"kart_src(
extern "C" {

double) ;

// original function
double my_kernel (double a,
{ return a * b * CONST; }

double Db)

})kart_src"; // close raw string literal

int main (int argc,

{

charx* argv)

// create program
kart::program my_prog (my_kernel_src);
// create default toolset
kart::toolset ts;
// append a constant definiton (runtime value)
ts.append_compiler_ options (" —DCONST=5.0");
// build program using toolset
my_prog.build(ts);
// get the kernel
auto my_kernel =
my_prog.get_kernel<my_kernel t>("my_kernel");

/* ... application code ... */

// call the kernel as usual

double res = my_kernel (3.0, 5.0);

/* ... application code ... %/

14 /25

WIP: selecting runtime-compiled source via annotations

BEGIN_KART_COMPILED_CODE(my_kernel, double (*) (double, double))
double my_kernel(double a, double b)
{
return a * b;
¥
END_KART_COMPILED_CODE ()

Idea:

= easier adaptation of existing code

= use preprocessor to generate wrapping code around functions
= kernel name and type are specified manually
= can be enabled/disabled globally per define

Problem:

= edgy use of preprocessor

= only works with "g++ -E", followed by compilation (not in a single command)

15/25

Benchmarks - Synthetic Kernels

extern "C"

void matvec_kart (float a[] [COLS],
float b[ROWS],
float x[COLS])

for (int

i =

for (int j

b[i]

+= a

0;
[i

0
]

i

(3

j
]

ROWS; ++1i)

< COLS;
* x[7J]

++3)
» ALPHA;

extern "C"

void convolve_kart (floatx restrict input,
float+ restrict kernel,
float+ restrict output)

#pragma omp parallel for
for (int i = 0; i < INPUT_SIZE; ++1i) {
float sum = 0;
for (int j = 0; j < KERNEL_SIZE; ++3)
sum += kernel[j] * input[OFF + i + JjI;
output [i] = sum;

}

16 /25

Benchmarks - Synthetic Kernels

matvec, alpha=0, HSW
matvec, alpha=1, HSW

convolve, off=0, HSW
matvec, alpha=0, KNL
matvec, alpha=1, KNL

convolve, off=0, KNL

Synthetic kernel runtime comparison

O w/o KART B KART

:l

. — 258

|

— 2.61x
|F| | | | S
0 2 4 6 10

runtime [s]

17/25

Benchmarks - WSM6 (Fortran)

WSM6 kernel runtime comparison
O w/o KART m KART

2x Xeon E5-2630v3 (HSW) ——, 1.11x
Xeon Phi 7210 (KNL) ﬁ 116
I |

0 20 40 60 80 100
runtime [ms]

WSM6 - the WRF Slngle Moment 6-class Microphysics schema - is part of the Weather
Research and Forecast (WRF) model, widely used for numerical weather prediction.

18/25

Benchmarks - HEOM Hexciton Benchmark

HEOM kernel runtime comparison
O w/o KART m KART

2X Xeon E5-2630V3 (HSW), AV [126
2X Xeon E5-2630V3 (HSW), MV [111
Xeon Phi 7210 (KNL), AV [peeeer—— 1.68 x
Xeon Phi 7210 (KNL), MV F 1.46 x

0 5 10 15 20

runtime per call [ms]

HEOM - Hierarchical Equations of Motion - is a model for computing open quantum systems,
e.g. used to simulate energy transfers in photo-active molecular complexes.

19/25

Compilation Overhead

Runtime compilation techniques pay off when the accumulated runtime savings
of all kernel calls exceed the runtime compilation cost.

= speed-up of the runtime-compiled kernel over the reference kernel:

s Lref
b pr—
tkart

y lref > tkart = Sp > 1

= s, is an upper bound for the actual speed-up s including compilation overhead,
where n is the number of kernel runs:

n - teef

n- teart + tcompile

= number of calls n. needed to amortise tcompile:

o tcompile
ne —= ——
tref — Tkart

20/25

Compilation Overhead

Runtime compilation techniques pay off when the accumulated runtime savings
of all kernel calls exceed the runtime compilation cost.

= speed-up of the runtime-compiled kernel over the reference kernel:

tref
Sp = y tref > tkart = Sp > 1
tkart
= s, is an upper bound for the actual speed-up s including compilation overhead,

where n is the number of kernel runs:

n - teef

n- teart + tcompile

= number of calls n. needed to amortise tcompile:

o teompile HEOM:
7 tef — trart ne =~ 103, ngy ~ 10%, n~ 105

Benchmarks - Compile Time

OpenCL, HSW
KART+intel, HSW
KART+gcc, HSW
KART+clang, HSW
OpenCL, KNL
KART+intel, KNL
KART+gcc, KNL

KART+clang, KNL

HEOM kernel compilation cost

O empty kernel

|

B auto vect. kernel

56 ms
95 ms

2337 ms
2987 ms

1990 ms
2065 ms

1893 ms
2130 ms

176 ms
500 ms

7734 ms
11110 ms

7872 ms
8152 ms

10272 ms
10004 ms

|

0 2000

6000 10000
compile time [ms]

14000

21/25

Goal: Reduce compile time overhead

Ideally:

= Standardised library API provided by compilers

=> no processes
= no file operations
= no network operations (e.g. license server)

= OpenMP directives (with same compilers)

22 /25

Goal: Reduce compile time overhead

Next steps:

= add LLVM/MCIJIT as backend (approach C.) to save compile time where LLVM
yields sufficient code

= see how much overhead remains (without process creation and file |/0)

23 /25

Goal: Reduce compile time overhead

Next steps:

= add LLVM/MCIJIT as backend (approach C.) to save compile time where LLVM
yields sufficient code

= see how much overhead remains (without process creation and file |/0)

= implement automatic kernel cache

= cache the generated libs with checksums based on source, toolchain, and options
= similar to PoCL (OpenCL implementation using the LLVM toolchain like KART)

Goal: Reduce compile time overhead

Next steps:

= add LLVM/MCIJIT as backend (approach C.) to save compile time where LLVM
yields sufficient code

= see how much overhead remains (without process creation and file |/0)

= implement automatic kernel cache

= cache the generated libs with checksums based on source, toolchain, and options
= similar to PoCL (OpenCL implementation using the LLVM toolchain like KART)

= compilation server/deamon

= global kernel-cache (more re-use)
= compile fast on Xeon, run fast on Xeon Phi
= limit license use

23 /25

Runtime compilation allows much more

= benchmarking/auto-tuning of kernels based on input data

= can be combined with source code generation techniques

= different variants of the same kernel
= even from different compilers/versions

= single binary for different SIMD instruction sets (even unknown ones)

= cross language use

Runtime compilation allows much more

benchmarking/auto-tuning of kernels based on input data
can be combined with source code generation techniques

different variants of the same kernel
= even from different compilers/versions

single binary for different SIMD instruction sets (even unknown ones)

cross language use

Example

= benchmark math function on HLRN-III Cray XC40 supercomputer

1. host application compiled with Cray compiler

2. generates benchmark kernel source from template

3. compiles and links in code with Cray, Intel, Clang, and GCC
4. benchmarks kernels

= ...and it works!

24 /25

EoP - Thank you!

= The code will be available soon:

= https://github.com/noma/kart
= click "Watch" and wait
= or send me a mail

= Boost Software License
(BSD/MIT-like)

= Questions, use cases, ideas, ...7?
= contact me: noack@zib.de

= Paper:
= M. Noack, F. Wende, G. Zitzlsberger, M.
Klemm, T. Steinke, KART—A Runtime
Compilation Library for Improving HPC

Application Performance,
ISC'17 Workshop Proceedings

F

>

oL

>

https://github.com/noma/kart

	Introduction
	KART
	Benchmarks
	EoP

