

Early Science on NERSC's Cori: A Cray XC40 Intel Xeon Phi Based Supercomputer

#### **Richard** Gerber

NERSC Senior Science Advisor High Performance Computing Department Head





Office of Science

Bio Energy, Environment



Particle Physics, Astrophysics



Computing





Materials, Chemistry, Geophysics



**Nuclear Physics** 



Fusion Energy, Plasma Physics

7,000 users, 750 projects, 700 codes, 48 states, 40 countries, universities & national labs





Office of

Science

Cori





Cray XC40 : 9,688 Intel Xeon Phi (KNL) nodes : 2,388 Intel Xeon (Haswell) nodes #5 on list of Top 500 supercomputers in the world November 2016







# NERSC's KNL Challenge

Enable NERSC's diverse community of 7,000 users, 750 projects, and 700 codes to run on Cori's Intel Xeon Phi Knights Landing processors at high performance





### **NESAP Code Improvements on KNL**



National Energy Research Scientific Computing Center



### KNL Improvements vs. "Business as Usual"



National Energy Research Scientific Computing Center



### **KNL Usage**



#### Contrary to our concerns, demand for the KNL nodes is great.



Day



**KNL Science 2017** 



2.6 billion NERSC Hours to science in 2017 to date (June 9)

Boon to science: More than all 2016 NERSC Hours

KNL node "performance factor" = 1.2X Haswell dual socket node



Cori KNL Hours Used Jan-Jun 2017





## **Top NERSC KNL Projects**

min

BERKELEY LAB



| Project                                                                         | PI                                 | NERSC Hours |
|---------------------------------------------------------------------------------|------------------------------------|-------------|
| Domain Wall Fermions & Highly Improved Staggered Quarks for LQCD                | Christ, Columbia                   | 420,058,594 |
| Extending the capabilities of Quantum Espresso for Cori                         | Kent, ORNL                         | 256,725,129 |
| Quantum Chromodynamics with four flavors of dynamical quarks                    | Toussaint, Arizona                 | 202,709,225 |
| Catalyst Design for Environmentally Benign Energy Production                    | Mavrikakis, Wisc.                  | 199,249,907 |
| Wall-Resolved Large Eddy Simulations of Transonic Shock-Induced Flow Separation | Malik, NASA                        | 146,650,664 |
| The Materials Genome                                                            | Persson, LBNL                      | 105,639,633 |
| Accelerated Climate Modeling for Energy                                         | Leung, PNNL                        | 104,689,290 |
| Version vormal Shock                                                            | Separation<br>MATERIALS<br>PROJECT |             |



9



#### Summary of NERSC Experiences

Cori with light-weight Intel Xeon Phi processors provides unprecedented capability for DOE Office of Science research

NESAP has enabled large percentage of NERSC workload to run efficiently on new class of manycore system

Lessons learned and knowledge gained are being communicated to and applied by NERSC community

Collaborations with application teams, vendors, and HPC community are necessary for success