
LLNL-PRES-731545
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory 
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

ECP	Alpine:	Algorithms	and	Infrastructure	for	In	
Situ	Visualization	and	Analysis

Presented	By:	Matt	Larsen



LLLNL-PRES-681296
2

Outline

§ Alpine	Overview

§ Alpine	In	Situ

§ VTK-h

§ Current	State

§ Addressing	in	situ	constraints

2



LLLNL-PRES-681296
3

What	is	Alpine?

§ Exascale computing	project

§ ~	6M	in	funding	over	3	years

§ Goals
— Infrastructure	

• Create	a	common	ecosystem	for	visualization	development
– Algorithms	written	once	are	deployed	in	VisIt and	ParaView

— Algorithms
• Implement	production	algorithms	for	exascale environments
– E.g.,	time	and	memory	constraints

3



LLLNL-PRES-681296
4

Alpine	contributors

§ Los	Alamos	National	Laboratory	(LANL)
— James	Ahrens	(PI),	Roxana	Bujack,	Jon	Woodring

§ Lawrence	Livermore	National	Laboratory	(LLNL)
— Eric	Brugger,	Matt	Larsen	

§ University	of	Oregon	(UO)
— Hank	Childs

§ Kitware,	Inc.
— Berk Geveci,	Utkarsh Ayachit,	Reid	Porter	

§ Lawrence	Berkeley	National	Laboratory	(LBNL)
— Gunther	Weber,	Oliver	Ruebel

4



LLLNL-PRES-681296
5

Alpine	major	components

§ VTK-m
— Separate	ECP	software	technology	project	for	node-level	parallelism

§ VTK-h
— Distributed	memory	layer	build	on	top	of	VTK-m

§ Alpine	In	Situ
— Flyweight	interface	for	VTK-h

5



LLLNL-PRES-681296
6

Where	does	the	Alpine	project	fit	in	the	larger	ecosystem?

VisIt

Simulation

AVT
VTK-h

Alpine In Situ

VTK-h

ParaView

Catalyst

VTK-h

LibSim

VTK-m VTK-m VTK-m



LLLNL-PRES-681296
7

Alpine	major	components:	VTK-m

§ “m”	for	many-core

§ Provides	a	data	parallel	abstraction
— Algorithms	composed	of	data	parallel	operations
— Programming	for	portable	performance

• TBB	and	CUDA

§ Flexible	and	efficient	mesh	data	model

7

A B C D E FAlgorith
m

Backend

VTK-m



LLLNL-PRES-681296
8

Alpine	major	components:	VTK-h

§ “h”	for	hybrid	parallel

§ Distributed	memory	layer	on	top	of	
VTK-m	filters
—MPI	or	DIY	(do-it-yourself	analysis)

§ Library	provides	distributed:
— data	model
— filters

8

VTK-h filter

MPI / DIY

VTK-m Filter

vtkhDataSet input

vtkhDataSet output



LLLNL-PRES-681296
9

Alpine	major	components:	Alpine	In	Situ

§ “h”	for	hybrid	parallel

§ Distributed	memory	layer	on	top	of	
VTK-m	filters
—MPI	or	DIY	(do-it-yourself	analysis)

§ Library	provides	distributed:
— data	model
— Distributed	filters

9

Alpine

Simulation

Conduit
In-Core	Data	Description

In Situ Pipelines
VTK-h	

Data	Model	+	Filters

Mesh	Data Actions

Parallel	Compositing

Web	ClientImagilesImage	Files

Rendered	Images

Publish Execute



LLLNL-PRES-681296
10

Outline

§ Alpine	Overview

§ Alpine	In	Situ

§ VTK-h

§ Current	State

§ Addressing	in	situ	constraints

10



LLLNL-PRES-681296
11

Alpine	prototype	is	based	on	Strawman



LLLNL-PRES-681296
12

Why	should	you	care?

§ Flyweight	in	situ	analysis	library
— Low	simulation	code	footprint
— Removes	need	for	VisIt and	ParaView dependencies	

§ Modular	pipelines
— VTK-h	pipeline
— HDF5	pipeline
— [	insert	custom	analysis	here	]

§ Multiple	languages	bindings
— C,	C++,	FORTRAN,	Python

12



LLLNL-PRES-681296
13

We	collected	requirements	for	tightly	coupled	
in	situ	use	cases.	

§ 3	Categories
— Portability

• Architectures,	languages,	mesh	types
— Usability

• Reduce	integration	time,	data	ownership,	run-time	control,	easy	to	consume	
results

— Minimal	burden	on	simulation
• Execution	time,	memory	usage

See	ISAV2015	paper	for	full	list	of	requirements



LLLNL-PRES-681296
14

What	is	the	integration	burden?

Simulation Codes
LULESH Kripke CloverLeaf3D Ares

Data 
Description

15 21 39 42

Action 
Descriptions

14 14 14 14

Alpine API Calls 7 7 9 7

Total Lines of 
Code

36 42 62 63



LLLNL-PRES-681296
15

Conduit Provides:
• JSON style object model
• Type standardization (e.g., float64)
• Separates data and description
• Run-time focused
• Multiple language APIs

https://github.com/llnl/conduit

Conduit	is	used	for	in-core	data	description.



LLLNL-PRES-681296
16

Integration	example:	Alpine	in	situ	API	calls

Alpine alpine;
Node options;
Options[“mpi_comm”] = mpi_comm_handle(MPI_COMM_WORLD);
alpine.Open(options);
alpine.Publish(data);
alpine.Execute(actions);
alpine.Close();



LLLNL-PRES-681296
17

Meshes	are	described	using	the	Conduit	Mesh	“Blueprint”

§ Coordinate	Sets:
— Implicit:	Uniform,	Rectilinear
— Explicit

§ Topologies:
— Implicit:	Uniform,	Rectilinear,	Structured
— Unstructured

• Zoo	Elements	+	Polygons	and	Polyhedra

§ Fields:
— Centerings and	associated	cells	sets

The	Blueprint	provides	a	general	set	of	conventions	that	allow	us	to	easily	target	
concrete	APIs	(VTK,	VTKm,	Silo,	ADIOS,	etc)



LLLNL-PRES-681296
18

Integration	Example:	Describing	LULESH’s	data



LLLNL-PRES-681296
19

Integration	Example:	Describing	in	situ	actions

conduit::Node actions;
conduit::Node &add = actions.append();
add[“action”] = “add_plot”;
add[“var”] = “pressure”;
char file_name[30];
sprintf(file_name, “image%04d”, cycle);
add[“render_options/file_name”] = file_name;
add[“render_options/width”] = 1024;
add[“render_options/height”] = 1024;
conduit::Node &draw = actions.append();
draw[”action”] = ”draw_plots”;



LLLNL-PRES-681296
20

Version	0.1.0	Released

§ Source	code:
—https://github.com/Alpine-DAV/alpine
—Use	the	“develop”	branch

§ 3	included	pipelines:
— VTK-m	(rendering)
— HDF5	(I/O)
— Empty	(insert	your	code	here)



LLLNL-PRES-681296
21

Outline

§ Alpine	Overview

§ Alpine	In	Situ

§ VTK-h

§ Current	State

§ Addressing	in	situ	constraints

21



LLLNL-PRES-681296
22

VTK-h	

§ ”H”brid parallel
— Parallel	across	nodes	(MPI)
— Parallel	on-node	(	VTK-m:	CPU	and	GPU)

§ Single	environment	to	deploy	algorithms
— Deployed	in:

• Alpine	In	Situ
• ParaView
• VisIt

22



LLLNL-PRES-681296
23

4	algorithmic	focus	areas	in	VTK-h

§ Data	selection
— What	subset	of	the	data	is	interesting?

• Feature	centric	analysis
• Topological	analysis

§ Data	reduction
— Adaptive	sampling
— Lagrangian analysis	(flow	visualization)

23



LLLNL-PRES-681296
24

What	else	will	be	available?

§ Filters
— Isosurfaces
— Gradients
— Histograms
— And	many	more	to	come

§ Data	reduction
— Image	databases	(Cinema)

24



LLLNL-PRES-681296
25

Outline

§ Alpine	Overview

§ Alpine	In	Situ

§ VTK-h

§ Current	State

§ Addressing	in	situ	constraints

25



LLLNL-PRES-681296
26

Current	state

§ In	quarter	2	of	a	three	year	project

§ Alpine	In	Situ	prototype	is	released
— Currently	only	rendering
— https://github.com/Alpine-DAV/alpine

§ Upcoming	milestones
— Y1/Q3:	in	situ	algorithms	prototypes
— Y1/Q4:	Alpine	in	situ	API	released
— Y2/Q1:	Initial	release	of	Alpine	

26



LLLNL-PRES-681296
27

Outline

§ Alpine	Overview

§ Alpine	In	Situ

§ VTK-h

§ Current	State

§ Addressing	in	situ	constraints

27



LLLNL-PRES-681296
28

§ Assumptions:
— Visualization	and	analysis	will	be	increasingly	performed	in	situ
— Visualization	and	analysis	will	need	to	occur	within	simulation	constraints

Performance	modeling	of	in	situ	rendering

“Can your visualization 
routines run within my 

simulation code’s 
constraints?”

?



LLLNL-PRES-681296
29

§ Current	answers:
— Honest: “I	don’t	know”
— Reckless: “Let’s	try	it	and	see!”
— Anecdotal: “I	ran	something	similar	before	and	worked.”
— Extrapolation:			“I	ran	25%	that	size	in	1/4th the	time	…	so	it	should	work.”

§ Better	answer:
— “I	know	the	answer	is	yes,	and	here’s	why…”

• “And	you	will	have	this	much	extra	time	and	could	also	run	that…”			
-or-
— “I	know	the	answer	is	no,	and	here’s	why…”

• “And	if	you	want	it	to	work,	then	here	are	the	options…”

“Can	your	visualization	routines	run	within	my	
simulation	code’s	constraints?”

We believe performance modeling is 
a very promising approach for 
achieving the “better answers.” 



LLLNL-PRES-681296
30

§ Dependent	on	many	factors
— rendering	technique
— configuration

• hardware	architecture	(CPU	vs GPU)
• concurrency	(i.e.,	#	of	MPI	tasks)

— workload
• camera	position
• amount	of	geometry
• image	size

§ But,	even	in	the	worst	case,	rendering	a	single	image	rarely	exceeds	0.25	seconds

How	long	does	it	take	to	render?

A new paradigm is emerging that 
requires rendering many, many images.

Increases rendering time by orders of 
magnitude.

This motivates need for performance 
modeling of rendering.



LLLNL-PRES-681296
31

§ Images	as	a	form	of	data	compression
— Simulation	mesh	size	>	1015
— Image	size	about	106

§ Many	camera	angles

§ Many	operations
— Contours
— Slices

§ Creates	an	interactively	explorable image	database
— Can	be	explored	in		post-hoc	manner

Cinema	(LANL	– cinemascience.org )

“An image-based approach to extreme 
scale in situ visualization and analysis,” 

Ahrens et. al, SC14.



LLLNL-PRES-681296
32

Three	models	and	two	architectures

Volume rendering, ray tracing and 
rasterization.

Consult the paper for more details



LLLNL-PRES-681296
33

§ 32	MPI	ranks

§ 100	images
— One	time	initialization	for	ray-tracing	is	amortized

§ Ray	tracing	
— Wins	when	

• Number	of	objects	is	large
• Lower	resolutions

With	models	we	can	ask	questions:
ray	tracing	versus	rasterization

100

200

300

400

500

1000 2000 3000 4000

Actual Pixels

O
bj

ec
ts

0.50

1.00

1.50
Ratio

CPU1 Rasterization vs Ray−tracing

√Image Size 



LLLNL-PRES-681296
34

CPU	ray	tracing	versus	rasterization

100

200

300

400

500

1000 2000 3000 4000

Actual Pixels

O
bj

ec
ts

0.50

1.00

1.50
Ratio

CPU1 Rasterization vs Ray−tracing

3842 Resolution
√

1 M Triangles

27 M Triangles

125 M Triangles

40002 Resolution
√Image Size 

Ray Tracing 
Render Time 
Rasterization
Render Time 



LLLNL-PRES-681296
35

CPU	ray	tracing	versus	rasterization

100

200

300

400

500

1000 2000 3000 4000

Actual Pixels

O
bj

ec
ts

0.50

1.00

1.50
Ratio

CPU1 Rasterization vs Ray−tracing

Rasterization
Wins

Ray Tracing
Wins

√√√Image Size 



LLLNL-PRES-681296
36

CPU	ray	tracing	versus	rasterization

100

200

300

400

500

1000 2000 3000 4000

Actual Pixels

O
bj

ec
ts

0.50

1.00

1.50
Ratio

CPU1 Rasterization vs Ray−tracing

Rasterization
~1.5x More Images
At High Resolutions 

Ray Tracing
~10x More Images

At Lower 
Resolutions 

√√√Image Size 



LLLNL-PRES-681296
37

CPU	ray	tracing	versus	rasterization

100

200

300

400

500

1000 2000 3000 4000

Actual Pixels

O
bj

ec
ts

0.50

1.00

1.50
Ratio

CPU1 Rasterization vs Ray−tracing

√

Common 
Configurations

√√Image Size 




