
Performance evaluation of Weather
Research and Forecast (WRF) on Intel

Knights Landing Processor (KNL)
George S. Markomanolis, Saber Feki
KAUST Supercomputing Laboratory

King Abdullah University of Science and Technology

IXPUG Birds of a Feather (BOF),
Supercomputing 2016 (SC16)

Salt Lake City, November 16, 2016

WRF

�  Weather Research and Forecasting Model (WRF) is one of the
most used models on our supercomputer Shaheen II

�  We use the domain Conus 12km:
�  All the simulation fits in MCDRAM
�  One Intel KNL node (Phi 7210, 64 cores) was used for all the

experiments
�  3 hours of simulation, saving output files after 3 hours

IXPUG BOF SC16 2

Clustering and memory modes

�  We did experiments on various memory modes, flat/cache, and
clustering modes Quadrant/Hemisphere/SNC-4/SNC-2

�  Extensive experiments from 1 to 64 MPI processes while using 1 to
64 OpenMP threads (using at least 32 cores totally per simulation),
1-4 hyper threads and OpenMP affinity scatter/compact/balanced

IXPUG BOF SC16 3

Flat - Quadrant

IXPUG BOF SC16 4

0
20
40
60
80

100
120
140

1 2 3 4
E

xe
cu

ti
on

 t
im

e
(i

n
se

c.
)

Hyper-threads

Scatter affinity, full KNL

1x64

2x32

4x16

8x8

16x4

32x2

62x1

64x1

0
20
40
60
80

100
120
140

1 2 3 4

E
xe

cu
ti

on
 t

im
e

(i
n

se
c.

)

Hyper-threads

Scatter affinity, 32 cores

1x32

2x16

4x8

8x4

16x2

32x1

�  Using all the physical cores of the KNL, provide at least 19.6% performance improvement in comparison to half KNL

�  We have the best performance with 32 cores for MPI, and 4 OpenMP threads by using 2 cores and 2 hyper threads per MPI process
(KMP_PLACE_THREADS=2C,2T, numactl –m 1)

�  With 4 hyper-threads we usually have better performance than 3 hyper-threads

�  We use only MCDRAM for these experiments

Affinity

IXPUG BOF SC16 5

56
58
60
62
64
66
68
70

1 2 3 4

E
xe

cu
ti

on
 t

im
e

(i
n

se
c.

)

Hyper - threads

Cache, quadrant, 32 MPI processes, 2 cores per
MPI process

Scatter

Compact

Balanced

�  The scatter affinity behaves better than the rest options, but overall there is variation.
�  In this case, with 4 hyper-threads we have similar or better performance than 3 hyper-threads.

Flat vs Cache mode

IXPUG BOF SC16 6

56
58
60
62
64
66
68
70

1 2 3 4

E
xe

cu
ti

on
 t

im
e

(i
n

se
c.

)

Hyper-threads

32 MPI processes, 2 cores per MPI process,
quadrant

Flat

Cache

�  Flat is overall better than Cache mode for this application up to 4%.

Comparison of clustering modes

IXPUG BOF SC16 7

55

60

65

70

75

1 2 3 4

E
xe

cu
ti

on
 t

im
e

(i
n

se
c.

)

Hyper-threads

32 MPI processes, 2 cores per MPI process

Quadrant

Hemisphere

SNC-4

SNC-2

�  Quadrant mode behaves more efficient across all the comparisons

�  We use an instance with the best provided performance. We select 32 MPI processes, with 2 cores per MPI process

MCDRAM vs DDR4

IXPUG BOF SC16 8

0

1

2

3

4

1 2 3 4

S
p
ee

d
up

Hyper-threads

32 MPI processes, 2 cores per MPI process,
quadrant mode

�  MCDRAM is at least around to 3 times faster than DDR4 when we use WRF.
�  While increasing the hyper-threads, the speedup varies from 3 to 3.3 times.

WRF – Patches and tiles
�  The domain is distributed in rectangular pieces on different cores and theses pieces can be

subdivided into smaller rectangular pieces that are called tiles and can be assigned to threads.
We test different size of tiles.

IXPUG BOF SC16 9

0

20

40

60

80

100

120

2 3 4

E
xe

cu
ti

on
 t

im
e

(i
n

se
c.

)

Hyper-threads

Default 2 M x 32
O x N T

Tile optimized 2
M x 32 O X N T

Default 4 M x 16
O X N T

Tile optimized 4
M x 16 O X N T

�  2 M x 32 O x 2 T
means 2 MPI, 32
OpenMP threads and
2 hyper-threads. The
default tile has
dimensions 1 x 64. If
we change it to 2 x
32 (Tile optimized 2
M x 32 O x 2 T), then
we get 4%
performance
improvement.

Comparison with Haswell
�  The performance on KNL is 20,54% faster than dual socket Haswell

excluding the I/O time. This is achieved with Flat/Quadrant modes,
mapping the application on MCDRAM, with 32 MPI processes, 2
cores per MPI process and 2 threads for each process.

IXPUG BOF SC16 10

0

10

20

30

40

50

60

70

80

WRF

E
xe

cu
ti

on
 t

im
e

(i
n

se
c.

)

Haswell

KNL

Thank You !

11 IXPUG BOF SC16

WRF – I/O with Comm
�  Serial NetCDF

�  All the MPI processes send data to the root rank and this one writes the data
serially (totally ~2GB). The results include the communication and the I/O times

IXPUG BOF SC16 12

0

2

4

6

8

KNL slowdown over
Haswell

1 MPI

2 MPI

4 MPI

8 MPI

16 MPI

32 MPI

The communication between the participated MPI processes to rank 0 delays a lot the total
execution, that’s why the time for the total procedure of I/O with 1 MPI process is faster
than having more MPI processes.

0

20

40

60

80

100

120

1 2 4 8 16 32

W
R

F
I/

O
 w

it
h

C
om

m

ti
m

e
(i

n
se

c.
)

MPI processes

Haswell KNL

Summary and Future work

�  We did an extensive study of WRF on single node of KNL

�  We checked various memory and clustering modes

�  We did check the accuracy of the results

�  WRF on KNL is 20% faster than dual socket Haswell

�  It would be interesting to study the WRF I/O with Intel KNL and
Lustre filesystem

�  We need to test the scalability of WRF across KNL nodes

IXPUG BOF SC16 13

