
SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
1

Hierarchical Equations of Motion:
- OpenCL on the Xeon Phi -

- What we can learn from OpenCL -

Matthias Noack

Zuse Institute Berlin (ZIB)

Germany

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
2

What’s unique about my tuning work

 HEOM (Hierarchical Equations Of Motion)

 Dr. Tobias Kramer, Dr. Christoph Kreisbeck

 Simulation of energy transport in biological and
artificial light harvesting complexes

 Domain: Where quantum physics meets biology

 Execution mode: OpenCL, native

 Tools:

 OpenCL SDK

 Different C++ SIMD vector classes

 Intel Composer

 Vtune

 Manual assembler analysis

 State: 1 of 4 kernels tuned for the Xeon Phi

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
3

Performance

 List of OpenCL optimisations:

 Vectorisation-friendly memory layout (AoSoA) with automatic
vectorisation (~4.3x)

 Manual vectorisation (additional ~1.4x)

 Index calculations using macros (additional ~1.1x)

 Manual prefetching (additional ~1.1x)

 Compile-time matrix dimension in loops and index calculations
(difference of ~2.6x for the best optimised kernel)

 Overall OpenCL tuning result:

 Xeon Phi performance improved by ~7.3x

 Host performance improved by ~2.6x

 Xeon Phi vs. GPU-optimised kernel on K20c: ~2.0x

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
4

Performance (Hexciton Kernel Runtime)

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
5

Insights

 Try an OpenCL-like pattern for your kernels

 Decompose problem into work-items

 Parallel loop over work-groups (SIMD-width items per group)

 SIMD loop over work-items in a group

 Recompile kernels with constants from input (JIT would be ideal)

 Change memory layout (AoSoA) for contiguous
vector loads

 Use macros for complex index computations (avoid functions)

 Try manual vectorisation over “work-items”

 No SIMD loop necessary

 Replace: double ⇒ double_vec (Vc, vectorclass, micvec.h, …)

 Challenge:

 OpenCL compiler still generates faster code

 C-Compiler needs help for this pattern: #pragma (no)unroll,
(no)vector, ivdep; and manual loop-permutation

