
SC14  BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
1

Hierarchical Equations of Motion:
- OpenCL on the Xeon Phi -

- What we can learn from OpenCL -

Matthias Noack

Zuse Institute Berlin (ZIB)

Germany



SC14  BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
2

What’s unique about my tuning work

 HEOM (Hierarchical Equations Of Motion)

 Dr. Tobias Kramer, Dr. Christoph Kreisbeck

 Simulation of energy transport in biological and 
artificial light harvesting complexes

 Domain: Where quantum physics meets biology

 Execution mode: OpenCL, native

 Tools: 

 OpenCL SDK

 Different C++ SIMD vector classes

 Intel Composer

 Vtune

 Manual assembler analysis

 State: 1 of 4 kernels tuned for the Xeon Phi



SC14  BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
3

Performance

 List of OpenCL optimisations:

 Vectorisation-friendly memory layout (AoSoA) with automatic 
vectorisation (~4.3x)

 Manual vectorisation (additional ~1.4x)

 Index calculations using macros (additional ~1.1x)

 Manual prefetching (additional ~1.1x)

 Compile-time matrix dimension in loops and index calculations 
(difference of ~2.6x for the best optimised kernel)

 Overall OpenCL tuning result:

 Xeon Phi performance improved by ~7.3x

 Host performance improved by ~2.6x

 Xeon Phi vs. GPU-optimised kernel on K20c: ~2.0x



SC14  BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
4

Performance (Hexciton Kernel Runtime)



SC14  BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
5

Insights

 Try an OpenCL-like pattern for your kernels

 Decompose problem into work-items

 Parallel loop over work-groups (SIMD-width items per group)

 SIMD loop over work-items in a group

 Recompile kernels with constants from input (JIT would be ideal)

 Change memory layout (AoSoA) for contiguous 
vector loads

 Use macros for complex index computations (avoid functions)

 Try manual vectorisation over “work-items”

 No SIMD loop necessary

 Replace: double ⇒ double_vec (Vc, vectorclass, micvec.h, …)

 Challenge:

 OpenCL compiler still generates faster code

 C-Compiler needs help for this pattern: #pragma (no)unroll, 
(no)vector, ivdep; and manual loop-permutation


