
SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
1

Hierarchical Equations of Motion:
- OpenCL on the Xeon Phi –

- What we can learn from OpenCL -

Matthias Noack

Zuse Institute Berlin (ZIB)
Germany

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
2

What’s unique about my tuning work

§  HEOM (Hierarchical Equations Of Motion)
Ø  Dr. Tobias Kramer, Dr. Christoph Kreisbeck

§  Simulation of energy transport in biological and
artificial light harvesting complexes

§  Domain: where quantum physics meets biology
§  Execution mode: OpenCL, native
§  Tools:

Ø  OpenCL SDK
Ø  Intel Composer
Ø  Vtune
Ø  Manual assembler analysis

§  State: 1 of 4 kernels tuned for the Xeon Phi

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
3

Performance

§  List of OpenCL optimisations
Ø  Vectorisation-friendly memory layout (AoSoA) with automatic

vectorisation (~2.1x)
Ø  Manual vectorisation (additional ~3.0x)
Ø  Index calculations using macros (additional ~1.1x)
Ø  Manual prefetching (additional ~1.1x)
Ø  Compile-time matrix dimension in loops and index calculations

(difference of ~2.6x for the best optimised kernel)

§  Overall OpenCL tuning result:
Ø  Xeon Phi performance improved by ~7.3x
Ø  Host performance improved by ~2.6x
Ø  Xeon Phi vs. GPU-optimised kernel on K20c: ~2.0x

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
4

Performance (Hexciton Kernel Runtime)

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
5

Insights

§  Try an OpenCL-like pattern for your kernels
Ø  Decompose problem into work-items
Ø  Parallel loop over work-groups (SIMD-width items per group)
Ø  SIMD loop over work-items in a group
Ø  Recompile kernels with constants from input (JIT would be ideal)

§  Change memory layout (AoSoA) for contiguous
vector loads
Ø  Use macros for complex index computations

§  Try manual vectorisation over “work-items”
Ø  No SIMD loop
Ø  Replace: double	 ⇒	 double_vec	 (Vc, vectorclass, micvec.h, …)

§  Challenge:
Ø  OpenCL compiler still generates faster code
Ø  C-Compiler needs help for this pattern: #pragma (no)unroll,

(no)vector, ivdep; and manual loop-permutation

