/W

TATA

T o ~—:\’ = “'-’j":‘ Y 5= }’,'33
!@\Wﬁ:ﬁ\ﬁ\ M Vi :\QW&\‘\ M ‘ll«w(}i
JGCotJIJ eI LT,
[NTATATAT

Xeon Phi

rmance Engg

wAmber : Molecular Dynamics Simulation Package

\ B ") :_o | Simulation setup |

Vv
Calculate effective born

- .C. o’ :
L DT e radi
Pare B STt N Calculate off-diagonal
C‘ O \ / energy
v :‘ S

\
. '.’ 25 Hyd ropho b|c Calculate diagonal energy

V
N tether Calculate non-bond14

energy

) _,*-' r H o Calculate bond energies
S /\ (dihedral, an\cIJ/Ie and bond)
0 H d Calculate velocities/update
yar

Og en atom positions
bond

Increment time
step

Generalized Born F—
Model - Algorithm e
Flow End

TATA CONSULTANCY SERVICES

ExXperient

Optimization Journey

Simulation Performance (ns/day)
0.00 0.20 0.40 0.e0

data transfers optimized between host and MIC and atoms rebalanced
radii and diagonal computations also offload

OpenMP on host and OpenMP offload

balancing atoms across host and MIC

MPI on Host and OpenMP offload for off-diag computation

Enable Large Pages on MIC

Array Initializations distributed to OMP threads

Array Indexes precomputed to help prefetches

Other smaller hotspots also converted to OpenMP

Masking to remove conditional statements and chunking in Off-Diag

Radii comp. chunking to avoid false sharing

Radii loop dependencies removed using temporary arrays, atom distance also saved
Variables in OpenMP region made default-private

complex maths operation done in separate simd loop

Compilation Flags added for 64 bit alignment and streaming stores B Incremental
MNeighbor list computed in Radii and reused in Diag. Change
Off-diag. computation loop dependencies removed using temporary arrays —— Performance
Radii function inlined
The three hotspots merged to make single parallel region
Three largest hotspots made OpenMP, remaining serial, radii squared
Baseline
1
] 10 20 30

Incremental Change (%)

TATA CONSULTANCY SERVICES

Optimizations: Conversion from MPI to OpenMP

= |n MPI, data is private to each MPI rank (more ranks means more copies of
data)

= |n OpenMP, data can be shared or private

= Even if 2 MPI ranks work on different parts of same array, copies need to be
made. The merging of individual copies with each rank requires inter-process
communication which is expensive.

= |f an OpenMP thread requires data that has already been read by another
thread, there is possibility of getting the data from cache

Results varied from hotspot to hotspot
- off-diagonal time reduced by 33%

- radii computation time doubled
But overall there was a gain by 10%

TATA CONSULTANCY SERVICES

Experience certainty

» Radii inlined and three parallel region merged

Energy Calc after converting to OpenMP Inlining of radii and single parallel region

gb_energy ()
call radii_calc() // radii function

// ---off-diagonal calculation---
ISomp parallel

ISomp do

doi=1, atm_cnt

end do
ISomp end do
ISomp end parallel

// ---diagonal calculation ---
ISomp parallel

ISomp do

doi=1,atm_cnt

end do

ISomp end do

ISomp end parallel
end gb_energy()

radii_calc()
ISomp parallel
ISomp do
doi=1,atm_cnt

end do

ISomp end do

ISomp end parallel
end radii_calc

gb_energy ()

omp parallel

//radii calculation
lomp do
doi=1,atm_cnt

end do
ISomp end do

//off-diagonal calculation
ISomp do
doi=1,atm_cnt

end do
ISomp end do

//diagonal calculation
ISomp do
doi=1,atm_cnt

end do
ISom p end do

ISomp end parallel

end gb_energy()

Shared/private variables

need to be declared only
once here

Optimizations : Radii calculation loop

When computing jt atoms
effect on it" atom, the
reverse effect is also
calculated

This makes the loop count
N?/2 instead of N2

However since different
threads have partially
calculated values,
reduction is required.

Every atom has to interact with every other atom.

Sum of all interactions contribute to the overall energy

TATA CONSULTANCY SERVICES

ISomp do reduction(reff)
doi=1,atm_cnt
//create neighbor list

doj=i+1, atm_cnt //create neighbor list

if(condn) then
jilicount) =

count = iocount = iocount + 1

end if
end do

//gather data for maths operations
dok=1,iocount
vectmp = f(i,j)
end do
//the maths operations

//effective radii computation loop
dok=1, iocount

reff(i) = reff(i) + formulai(i,j)
reff(j) = reff(j) + formula2(i,j)
end do
end do
ISomp end do

Optimizations : Removing Reduction from

radii

Original Code structure Removal of Reduction from radii

ISomp do
doi=1, atm_cnt
//create neighbor list

if(condn) then
jilicount) =j
count = iocount = iocount + 1
end if
end do

//gather data for maths operations
dok=1, iocount
vectmp = f(i,j)
end do
//the maths operations

//effective radii computation loop
dok=1, iocount

reff(i) = reff(i) + formulai(i,j)

end do
end do
ISomp end do

30% reduction in radii computation time

TATA CONSULTANCY SERVICES

doj=1,atm_cnt//create neighbor list

Handling of reduction arrays

Temporary array solution

effective radii computation loop

IdirS omp do reduction (+:energy)
doi= 1,atm_cnt
dok=i+1, atm_cnt, 8
IdirS ivdep
doj=k, k+7

Original Code

ISomp do reduction (+:energy)
doi= 1,atm_cnt
doj=i+1,atm_cnt

counter=j—-k+1
tmp_engy_i(counter) = formulal(i,j)
tmp_engy_j(counter) = formula2(i,j)

energy(i) = energy(i) + formula:
energy(j) = energy(j) + formula:

end do end do
end do do j=k, k+7
Somp end do counter=j—-k+1

energy(i) = energy(i) + tmp_engy_i(counter)
energy(j) = energy(j) + tmp_engy_j(counter)
end do
end do
end do
Somp end do

SIMD reduction solution

IdirS omp do reduction (+:energy)
doi= 1,atm_cnt
dirS simd reduction (+energy)
doj=i+1,atm_cnt

energy(i) = energy(i) + formulal(i,j)
energy(j) = energy(j) + formula2(i,j)
end do
end do
Somp end do

25% incremental reduction

in off-diagonal
computation time

omp do reduction() : creates private copy of variable for each thread and does reduction at

the end of loop

simd reduction() : this is a pragma for vector reduction .

Precomputing array indexes

Index computed just before it is required
//off-diag calculation //off-diag calculation
ISomp do reduction(+:energy) ISomp do reduction(+:energy)
doi=1,atm_cnt doi=1,atm_cnt
.indx_i = ioc(i)
omp do reduction omp do reduction
doj=i+1, atm_cnt doj=i+1,atm_cnt

indx = indx_i + ioc(j)

Compiler inserts prefetch

instructions for mydata here

indx = ioc(i) + ioc(j) mydata = iac(indx)
mydata = iac(indx) if(mydata .eq. 0) then
if(mydata .eq. 0) then .
. end if
end if
mydata required here
end do end do
end do
end do Somp end do
Somp end do

7% incremental reduction in overall time

Using masking variables

Without Masking _With Masking

if(condition)

//off-diagonal calculation Cl=1
IdirS simd reduction(energy) C2=0
doj=i+1, atm_cnt. else
Cl=0
. C2=1
if (condition) then end if
mydata = ComplexEquationl
else //off-diagonal calculation
mydata = ComplexEquation2 IdirS simd reduction(energy)
end if doj=i+1, atm_cnt.

mydata = C1* ComplexEquationl + C2 * ComplexEquation2

end do

end do

9% incremental reduction in overall time

TATA CONSULTANCY SERVICES

2Optimizations : Chunk to prevent false Sharing

ORIGINAL

do i =1 , atm cnt
//create neighbor list
do j =1, atm cnt
if (condn) then
jj(icount) = j
count = iocount = iocount + 1
end if
end do

end do
!$ omp end do

CHANGED CODE

do outer i = 1, atm cnt, 8
max i = MIN(atm cnt,outer i + 7)
do i = outer i, max i
//create neighbor list
do j =1, atm cnt

end do
'$ omp end do

Thread 0 Thread 1
CPUO CPU1
Cache Line Cache Line
¥

Cache A Cache

Memory

= Chunk of 8 atoms given
to one thread at a time
to avoid false sharing

Summary

= Openmp scaled better than MPI
= Reduces communication requirements.
= Collapsing openmp regions helped gain performance
= Avoiding Openmp reduction by doubling the computation helps
= |n case where computations are comparable to synchronization overhead
= Use of $dir simd reduction helps enforce vectorization easier
= PreComputing array indexes helps
= When access pattern is not sequential
= Avoidance of false cache sharing

= Symmetric mode

» |mportant to balance workload between Xeon and Xeon Phi for optimal
performance

= Higher the problem size better the performance

Overall 5X increase in performance from parallel baseline

TATA CONSULTANCY SERVICES

Experience certainty

-11-

m.nambiar@tcs.com
nishant.agrawal@tcs.com

mailto:m.nambiar@tcs.com
mailto:nishant.agrawal@tcs.com

