(intel' Look Inside”

Performance Optimization of
Scientific and Engineering workloads
on Xeon/Xeon Phi

http://www.tcs.com/research

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors

Comments are from CJ Newburn

You have ~3 presentations here. All are very valuable. Could
you prioritize one over others? We'll also discuss this

Application: AMBER

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors

What's unique about my tuning work

- AMBER is a package of molecular simulation
programs.

» We worked on tuning Generalized Born (GB) algorithm for Intel Xeon
Phi Platform

» The Generalized-Born (GB) algorithm is an implicit solvent framework
that replaces aqueous solvent environment by an infinite continuum
medium with electrostatic properties of solvent.

- Execution modes: native and openMP offload

~ The application already had support for parallelism on host, mic and
also on cluster using MPI.

~ After tuning, we have added the offload mode. Even without offload,
the optimizations helped to get 1.5x performance on Xeon server and
3.5x on Xeon Phi

- Tools used: Vtune™ Amplifier XE and ompP

@ |3

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors

NOTES:
CJ:

If 50% and 250% better mean 1.5x and 3.5x, please use the
multiplicative factor — it's less ambiguous

BM:
Changed from % to x

Performance

Midsize
(Nucleos
ome) 0.2 0.37 1.85x 0.09 0.34 378 092x 0.56 1.51x 0.8 0.7x
Large
(Rubisco
) 0.01 0.03 3.0x 0.01 0.03 3.0x 1.0x 0.05 1.67x 0.04 1.25x

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors

CJ:

Please show the speedup ratios of KNC/IVT (that’s native, right?)
[0.92x,1x], symmetric/IVT [1.51x,1.67x], best KNC/K40 [0.7x,
1.25x]

Is this DP, DP? You have to specify, since it makes a huge
difference. On Rubisco, does the NV SP,FP still beat a
symmetric Xeon/MIC MPI, for which | presume you still use
DP,DP?

Did you have unit stride on Xeon, or memory coalescing on NV?
How did you get around GB’s use of the compress idiom?

BM:
- Speed up ratios added

- CUDA numbers are for DPFP (Amber 14 does not have DPDP
version)

- CUDA SPFP gives 4-6x times DPFP performance so we are
not yet in position to compete with SPFP

List of Optimizations

data transfers optimized between hostand MIC and atoms rebalanced
radii and diagonal computations also offload

OpenMP on host and OpenMP offload

balandng atoms across host and MIC

MPI on Host and OpenMP offload for off-diag computation

Enable Large Pages on MIC

Array Initializations distributed to OMP threads

Array Indexes precomputed to help prefetches

Other smaller hotspots also converted to OpenMP

Masking to remove conditional statements and chunking in Off-Diag
Radii comp. chunking to avoid false sharing

Radii loop dependencies removed using temporary arrays, atom distance also saved
Variables in OpenMP region made default-private

complex maths operation done in separate simd loop

|||l||||||‘|u|‘

Compilation Flags added for 64 bit alignment and seaming stores == Incrementz!
Neighbor list computed in Radii and reused in Diag. == Change
Off-diag. computation loop dependencies removed using temporary arrays IR Performance
Radii function inlined | ——
The three hotspots merged to make single parallel region
Three largest hotspots made OpenMP, remaining serial, radii squared ==
Baseline
0 10 20 30

Incremental Change (%)

Above graphic shows the various optimizations that helped scale native performance from
0.9 ns/day to 0.34 ns/day and with OpenMP offload to 0.56 ns/day for mid-size workload
called nucleosome.

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors

@D |5

CJ Notes:
This is a great graph!

Perhaps you could make Excel show data points which are the
incremental speedups relative to the last line, or perhaps a

second axis

Could you provide more detail on these in the speaker notes,
which we’d like to post?

I’'m curious about what the trick you used was to make it vect
with a temporary. Was this the variable that was used just after
the loop as a function call parameter? We’re working on a fix for
that in the compiler; not sure whether it’s in place yet. Ashraf
(mohammad.ashraf.bhuiyan@intel.com), who'’s been working on
AMBER at Intel, will know.

CJ2:
vectorization via temp not addressed yet.
Thanks for the others

Insights

- MPI vs OpenMP

» This is a crucial decision that needs to be taken well at the start
of the optimization process. With the original AMBER code having
MPI, lot of the initial effort trying to improve performance did not
result in performance improvement

~ After conversion to OpenMP, the same techniques helped
improve performance
- Though loop structure may appear similar, same
optimization do no work

» Small differences in the amount of computes, data being fetched,
amount of data shared between OpenMP threads may cause a
technique that worked on one loop to cause other loop to worsen

» The techniques that work on one but fail in another include
« Increasing computations to avoid reduction
¢ Introducing temporary arrays to prevent loop dependency

@D |6

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors

CJ

It'd be helpful to file test cases with our compiler, so we know
about these and can learn from them. Sometimes, it’s just a
matter of code trade-offs. Other times there may be something
we can do about it in the compiler.

BM
We are discussing these issues with Ashraf and Sumedh

— based on their recommendations, we will be filing some issues
with compiler team

Insights

- Manual peeling of loop to align arrays may result
in better performance

- Challenges still remaining : Smaller Workload
» The amount of speed-up achieved with medium and large
workloads is not seen with smaller workloads

» Even though optimizations resulted in reduced compute time, this
reduction is not sufficient in smaller workloads to offset the
OpenMP overheads

@D |7

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors

