
SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
1

Enabling Manual Vectorization
of Complex Code Patterns in Fortran

Florian Wende

Zuse Institute Berlin (ZIB)

Germany

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
2

What’s unique about my tuning work

 Generic approach to enable manual vectorization
in Fortran

 Standard approach: “Array notation” AND/OR “Loops + Directives”

• Limited expressiveness + no SIMD intrinsics

• Compiler may fail to vectorize → Poor program performance?!

 Our approach: SIMD-intrinsic-like coding in Fortran

• Complex loops → Sequence of MACROS containing simple SIMD loops

Y=_mm512_add_epi32(X1,X2) → #define SIMD_ADD_INT32(Y,X1,X2)\

do i=1,16;\

Y%v(i)=X1%v(i)+X2%v(i);\

enddo

• Auto-vectorizer can fuse loops if meaningful

 Application domain: Fortran codes with complex loop structure

 Test application: Connected component labeling (CCL) kernel

 Tools used: Intel Fortran compiler 15.0.0

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
3

Performance

 Compelling performance: We are almost as good as the
compiler in cases where the standard approaches work

 Our scheme should also work for complex loops which the
auto-vectorizer cannot handle

 Competitive performance: C intrinsics version of CCL kernel
about a factor 2 faster (Xeon Phi)

 Speedups: ~5x compared to non-vectorized code (Xeon Phi)

 List of Optimizations:

 SIMD data types: SIMD width + Alignment

 Fortran macros containing single-instruction loops

 best performance for our CCL kernel with

ifort -O3 -mmic -align array64byte -opt-assume-safe-padding

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
4

Insights

 What I learned: Auto-vectorization (report) is a story by itself

 What I recommend and how I would have done it
differently:

 Design data layout for SIMD directly from the first

 Test code sections for SIMD performance by porting them to
“C + Intrinsics” (maybe not nice but effective)

 Which tools/optimizations were most useful and why?

 Vec-report of the Intel 15 compiler: Infos about compiler
assumptions regarding alignment, dependencies, etc.

 Assembly code inspection

 Biggest surprise: C SIMD intrinsics version much faster

 Key remaining challenges: Apply scheme to large codes

 Questions I’d like to raise:

 Why are there no SIMD intrinsics in Fortran?

