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What’s unique about my tuning work (1/2) 

§  The solver: MAXW-DGTD 
Ø  Solves the Maxwell-Debye PDE system 
Ø  Discontinuous Galerkin – Time Domain method 

§  Bioelectromagnetics 
Ø  Evalution of SAR - wireless communication devices 
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What’s unique about my tuning work (2/2) 

§  The solver: MAXW-DGTD 
Ø  Solves the Maxwell-Debye PDE system 
Ø  Discontinuous Galerkin – Time Domain method 

§  Bioelectromagnetics 
Ø  Evalution of SAR - wireless communication devices 

§  Adaptation to DEEP-ER (booth #1039)  
Ø  Execution model: Native 
Ø  Baseline version: MPI 
Ø  Recent work: MPI / OpenMP 

§  Used tools 
Ø  Extrae/Paraver 
Ø  Scalasca  
Ø  Vtune 

The DEEP-ER heterogeneous 
architecture:
CN=Xeon / BN=Xeon Phi KNL
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Performance (1/2) 

§  Just compiling the OMP version with -mmic... 

§  Performance on one KNC 
Ø  Slightly superior to 8 SNB cores 

(chip to chip comparison) 
Ø  Slightly inferior to 16 SNB cores 

(box to box comparison) Walltime to reach 20 iterations 
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8 threads 
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16 threads 
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244 threads 

P1 8.24s 4.51s 4.54s 

P2 18.56s 9.81s 11.28s 

P3 34.63 18.66s 24.56s 
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Performance (2/2) 

§  Working on vectorization and data locality 
§  Loops on cells – cell local (small) linear algebra  
§  Linear algebra: updated to BLAS implementation 
§  Array splitting, loop reordering... 

Old New 
DO k=1,ndl 
  flx(k) = 0.0d0 
  fly(k) = 0.0d0 
  flz(k) = 0.0d0 
  DO j=1,ndl 
    flx(k) = flx(k) + amat(k,j)*flux(1,j,jt) 
    fly(k) = fly(k) + amat(k,j)*flux(2,j,jt) 
    flz(k) = flz(k) + amat(k,j)*flux(3,j,jt) 
  ENDDO 
ENDDO 

DO ic=1,3 
  DO k=1,ndl 
    temp1=flux(k,ic,jt) 
    !$OMP SIMD 
    DO j=1,ndl 
      fl(j,ic) = fl(j,ic) + amat(j,k)*temp1 
    ENDDO 
    !$OMP END SIMD 
  ENDDO 
ENDDO 
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§  Good improvement 
on SB! 

§  Not so good on KNC 
§  We are investigating 

Resolved a NUMA effect 
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Insights 

§  Still a work in progress at early stages 
§  Surprisingly good speedup results on 1 KNC! 

Ø  OMP and hybrid MPI/OMP can still be refined 

§  Not clear why some modifications hurt on KNC 
Ø  Vtune will help to find out which hotspots are concerned 

§  How will this impact development workflow? 
Ø  Should we keep a hope to preserve a unified Xeon / Xeon Phi 

version of the code? 
Ø  Should we create a Xeon Phi-specific branch straight away?  


