
SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
1

Adapting a solver for
bioelectromagnetics to the DEEP-ER

architecture

Raphaël Léger
Research Engineer

“Nachos” project-team
Inria Sophia Antipolis Méditerranée

France

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
2

What’s unique about my tuning work (1/2)

§  The solver: MAXW-DGTD
Ø  Solves the Maxwell-Debye PDE system
Ø  Discontinuous Galerkin – Time Domain method

§  Bioelectromagnetics
Ø  Evalution of SAR - wireless communication devices

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
3

What’s unique about my tuning work (2/2)

§  The solver: MAXW-DGTD
Ø  Solves the Maxwell-Debye PDE system
Ø  Discontinuous Galerkin – Time Domain method

§  Bioelectromagnetics
Ø  Evalution of SAR - wireless communication devices

§  Adaptation to DEEP-ER (booth #1039)
Ø  Execution model: Native
Ø  Baseline version: MPI
Ø  Recent work: MPI / OpenMP

§  Used tools
Ø  Extrae/Paraver
Ø  Scalasca
Ø  Vtune

The DEEP-ER heterogeneous
architecture:
CN=Xeon / BN=Xeon Phi KNL

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
4

Performance (1/2)

§  Just compiling the OMP version with -mmic...

§  Performance on one KNC
Ø  Slightly superior to 8 SNB cores

(chip to chip comparison)
Ø  Slightly inferior to 16 SNB cores

(box to box comparison) Walltime to reach 20 iterations

1

2

4

8

16

32

64

4.0 16.0 64.0 256.0

Sp
ee

du
p

Number of threads (compact affinity)

Xeon Phi OpenMP speedup

P1

P2

P3

Ideal

SNB
8 threads

SNB
16 threads

KNC
244 threads

P1 8.24s 4.51s 4.54s

P2 18.56s 9.81s 11.28s

P3 34.63 18.66s 24.56s

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
5

Performance (2/2)

§  Working on vectorization and data locality
§  Loops on cells – cell local (small) linear algebra
§  Linear algebra: updated to BLAS implementation
§  Array splitting, loop reordering...

Old New
DO k=1,ndl
 flx(k) = 0.0d0
 fly(k) = 0.0d0
 flz(k) = 0.0d0
 DO j=1,ndl
 flx(k) = flx(k) + amat(k,j)*flux(1,j,jt)
 fly(k) = fly(k) + amat(k,j)*flux(2,j,jt)
 flz(k) = flz(k) + amat(k,j)*flux(3,j,jt)
 ENDDO
ENDDO

DO ic=1,3
 DO k=1,ndl
 temp1=flux(k,ic,jt)
 !$OMP SIMD
 DO j=1,ndl
 fl(j,ic) = fl(j,ic) + amat(j,k)*temp1
 ENDDO
 !$OMP END SIMD
 ENDDO
ENDDO

.75000

1.000

1.25000

1.5000

1.75000

2.000

1.0 2.0 4.0 8.0 16.0

Sp
ee

du
p

ov
er

 b
as

el
in

e

Xeon OpenMP speedup over baseline

4.0 16.0 64.0 256.0

Xeon Phi OpenMP speedup over baseline

P1

P2

P3

Baseline

Number of threads

§  Good improvement
on SB!

§  Not so good on KNC
§  We are investigating

Resolved a NUMA effect

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
6

Insights

§  Still a work in progress at early stages
§  Surprisingly good speedup results on 1 KNC!

Ø  OMP and hybrid MPI/OMP can still be refined

§  Not clear why some modifications hurt on KNC
Ø  Vtune will help to find out which hotspots are concerned

§  How will this impact development workflow?
Ø  Should we keep a hope to preserve a unified Xeon / Xeon Phi

version of the code?
Ø  Should we create a Xeon Phi-specific branch straight away?

