(intelg) Look Inside”

Adapting a solver for
bioelectromagnetics to the DEEP-ER
architecture

sadl

1 mr
SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors J ".m

What's unique about my tuning work (1/2)

- The solver: MAXW-DGTD
> Solves the Maxwell-Debye PDE system
> Discontinuous Galerkin — Time Domain method

- Bioelectromagnetics
> Evalution of SAR - wireless communication devices

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors

What's unique about my tuning work (2/2)

The solver: MAXW-DGTD
> Solves the Maxwell-Debye PDE system
> Discontinuous Galerkin — Time Domain method

Bioelectromagnetics
> Evalution of SAR - wireless communication devices

Adaptation to DEEP-ER (booth #1039)

> Execution model: Native
> Baseline version: MPI
> Recent work: MPI / OpenMP

Used tools

» Extrae/Paraver
» Scalasca

> Vtune

NAM

The DEEP-ER heterogeneous
architecture:
CN=Xeon / BN=Xeon Phi KNL | |

@ |3

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors

Performance (1/2)

- Just compiling the OMP version with -mmic...
Xeon Phi OpenMP speedup

- .
a -><P2
5 16
-8 8 -—P3
S -=-[deal
n 4

2

1 | | |

4.0 16.0 64.0 256.0

Number of threads (compact affinity)

8 threads 16 threads 244 threads

> Slightly superior to 8 SNB cores

P1 8.24s 4.51s 4.54s _ : _
P2 18.56s 9.81s 11.285 (chip to chip comparison)
P3 34.63 18.66s 24.565 > Slightly inferior to 16 SNB cores

(box to box comparison)

Walltime to reach 20 iterations

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors

Performance (2/2)

- Working on vectorization and data locality
- Loops on cells — cell local (small) linear algebra
- Linear algebra: updated to BLAS implementation
- Array splitting, loop reordering...

Oid New
DO k=1,ndl DO ic=1,3
flx (k) = 0.0d0 DO k=1,ndl
fly (k) = 0.0d0 templ=flux(k,ic,jt) -
£lz (k) = 0.0d0 I$OMP SIMD - Good iImprovement
DO j=1,ndl DO j=1,ndl |
flx (k) = flx(k) + amat (k,d)*flux(1l,3,3t) £f1(3,ic) = f1(j,ic) + amat (3, k) *templ on SB!
fly(k) = fly(k) + amat(k,3)*flux(2,7,73t) ENDDO
£lz (k) = flz(k) + amat (k,j)*£flux(3,3,73t) I$OMP END SIMD . Not so gOOd on KNC
ENDDO ENDDO
ENDDO ENDDO - We are investigating
Xeon OpenMP speedup over baseline Xeon Phi OpenMP speedup over baseline
©2.000
£
1975000 P1
(1]
——
g.sooo P2
> e *- =4=P3
125000 0—.—.——0_‘_.j Basel
Y =@—Baseline
3
T1.000 = = = = il ﬁ i {} {F i i—a
]
@ 5000
1.0 2.0 4.0 8.0 16.0 4.0 16.0 64.0 256.0
Resolved a NUMA effect Number of threads — |
intel) | 5

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors

Insights

Still a work in progress at early stages

Surprisingly good speedup results on 1 KNC!
> OMP and hybrid MPI/OMP can still be refined

Not clear why some modifications hurt on KNC
> Vtune will help to find out which hotspots are concerned
How will this impact development workflow?

> Should we keep a hope to preserve a unified Xeon / Xeon Phi
version of the code?

» Should we create a Xeon Phi-specific branch straight away?

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors

