(intelg) Look Inside”

Native Mode-Based Optimizations
of Remote Memory Accesses in OpenSHMEM
for Intel Xeon Phi

HPC Tools Group

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors

What's unique about my tuning work

- Scientific Benchmarks: STREAM, NAS IS and SP
- Execution mode: Native

- OpenSHMEM PGAS library (), Scalasca
profiling tool

- shmem_ptr: address of a data object on a specific PE
- No function call — enhancing compiler optimizations

shmem int put(target,source,B,pe) ;

!

int *ptr = (int *)shmem ptr(target, pe);

for (i=0; i<B; i++)
ptr[i] = source[i];

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors

Performance

- Additional Optimizations: Vectorization and alignment
- Stampede Super Computer (Xeon Phi SE10P 61-cores)

- Improved communications:
> PGAS-Microbenchmarks from University of Houston
» decrease in latency by up to 60% and increase in bandwidth
by up to 12x
Bandwidth of STREAM Copy, Scale, Add and Triad
kernels is approximately increased by 40x when we
use an optimized reduction algorithm with
vectorization directives (such as #pragma vector
align)
- Improved reduction algorithms: up to 22% compared
to MVAPICH and 60% compared to IMPI

- IS Xeon Phi performance is 3x slower than Xeon

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors

Insights

- On shared memory, use Load/Store instead of “fake”
function calls in the compiler

Reduction: use Recursive Doubling for small message
sizes and Rabenseifner for large message sizes.

Future Work

Extending the reduction optimizations to other
collectives such as Barriers

- Automation of translating RMA calls into load/store
using OpenUH for shared memory systems

PGAS Language-based on MIC, such as Fortran Coarray

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors

