
SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
1

Native Mode-Based Optimizations
of Remote Memory Accesses in OpenSHMEM

for Intel Xeon Phi

Dounia Khaldi
Postdoctoral Fellow

HPC Tools Group, University of Houston
Houston, TX

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
2

What’s unique about my tuning work

§  Scientific Benchmarks: STREAM, NAS IS and SP
§  Execution mode: Native
§  OpenSHMEM PGAS library (openshmem.org), Scalasca

profiling tool
§  shmem_ptr: address of a data object on a specific PE
§  No function call → enhancing compiler optimizations

shmem_int_put(target,source,B,pe);

int *ptr = (int *)shmem_ptr(target,pe);
…
for (i=0; i<B; i++)
 ptr[i] = source[i];

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
3

Performance

§  Additional Optimizations: Vectorization and alignment
§  Stampede Super Computer (Xeon Phi SE10P 61-cores)
§  Improved communications:

Ø  PGAS-Microbenchmarks from University of Houston
Ø  decrease in latency by up to 60% and increase in bandwidth

by up to 12x

§  Bandwidth of STREAM Copy, Scale, Add and Triad
kernels is approximately increased by 40x when we
use an optimized reduction algorithm with
vectorization directives (such as #pragma vector
align)

§  Improved reduction algorithms: up to 22% compared
to MVAPICH and 60% compared to IMPI

§  IS Xeon Phi performance is 3x slower than Xeon

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
4

Insights

§  On shared memory, use Load/Store instead of “fake”
function calls in the compiler

§  Reduction: use Recursive Doubling for small message
sizes and Rabenseifner for large message sizes.

§  Extending the reduction optimizations to other
collectives such as Barriers

§  Automation of translating RMA calls into load/store
using OpenUH for shared memory systems

§  PGAS Language-based on MIC, such as Fortran Coarray

Future Work

