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Objectives

* get the last serial section (OFS) in runtime blast(n/p)
to parallelize

* Improve throughput performance of the
heterogeneous load sharing Xeon® — XeonPhi ®©
model, for multiple concatenated queries and
multiple db volumes (model #4).



Benchmark configurations

Intel ® Xeon ® Two 12-Core E5-2697 v2, 2.7GHz (IVT)
Intel ® Xeon Phi® 7120A (KNC)

BLAST version 2.2.29, code base retrieved from NCBI
website.

NCBI provided 100 BLASTn benchmarks.

Multiple query/multiple db command line options
are:

> blastn_mic —task blastn —db ‘db/refseq_rna.00 db/refseq_rna.01
db/refseq_rna.02’ —query queries/blastn/NM_5_concat —-num_threads 180



Query model and Xeon® — XeonPhi ©® experiment

([

s, 77 Yem(s  Phi(KNG) Xeon(s) Phifs)  Phi-OFSparllelied(s)
1525Nbr threads L 3 180 3 180 180 query models:

153 query model #4:

154599 query/mdb 75 62 54.4 # concat query/multiple dhs
155,splitting queries IVT-KNC speedup

156589/10 guery/mdb 552 112 13 86 N5 dbs;  refseq_ma.00-02

157,88/11 query/m db 544 196 <dift 4813 253

158/87/12 query/m b 576 8 m

159,84/15 query/m db 707 54 378

160581/18 guery/mdb 43 397 speedup speedup

161180/19 query/mdb 436 a7 30.4 138

1627920 query/m b 1519 B4 188

The 80 concatenated queries on Xeon (IVT) and 19 queries on KNC, in heterogeneous load
sharing model (#4) run concurrently in 41.7s and 39.4s respectively, as compared to all 99
concatenated queries on Xeon 54.4s. Here the speedup is 1.3x and ~1.4x for OFS parallelized



BLASTN: single query/single db (model #1)
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Clearly are visible the 3 sections on “CPU Time”. (1) preliminary search
(pthread parallelized), (2) traceback search (omp parallelized), and (3) output
formatting (serial)



Parallelizing OFS: strategy and implementation

|dentify top level loop and the one with most iterations (key loop)

Clone/initialize the “display’ (CDisplaySeqalign::) object one clone per
thread.

Break up key loop into NT iteration chunks (equalize workload)

|dentify key loop global object changing state per iteration and make NT
clones.

Spin up clones to a correct initial state.

Give each iteration chunk to one thread

Eliminate thread data contentions (mutexes) for maximum speed

Use LTS std::ostringstream object (STR_STREAM) per thread for output
Reduce NT STR_STREAM objects into the original NcbiOstrStream output



BLASTN: 5 concat queries on KNC running 180T (model #4
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BLASTN: OFS parallelization re-arch

num_threads==> 180

BATCH SIZE=48000

loop: ©.811623s, accum[l]: ©.811623s

loop: ©.472755s, accum[2]: 1.28438s

loop: 2.01804s, accum[3]: 3.30242s

loop: ©.667808s, accum[4]: 3.970
]
1

=

loop: 0.0430953s, accum[5]:(4.01332s

real 21.84

(a) parallelized OFS: breakdown of time spent in key loop vs overhead introduced, (b) serial OFS: original loop timing



Things to try

* Resolve icc issue building blastp (workaround
identified)

* Reduce OFS parallelization overhead
— Current implementation of cloning maybe too heavy?

— try OMP "#pragma omp parallel
#pragma omp single
for{ e = |-=first; e ; @ = e-=next )
#pragma omp task
process(e);

* Parallelize GAT for blastp.
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