Maximizing parallelizaton of BLAST:
Output Formatting Section (OFS)

Albert Golembiowski, Ph.D.

Intel® Corporation

Objectives

* get the last serial section (OFS) in runtime blast(n/p)
to parallelize

* Improve throughput performance of the
heterogeneous load sharing Xeon® — XeonPhi ®©
model, for multiple concatenated queries and
multiple db volumes (model #4).

Benchmark configurations

Intel ® Xeon ® Two 12-Core E5-2697 v2, 2.7GHz (IVT)
Intel ® Xeon Phi® 7120A (KNC)

BLAST version 2.2.29, code base retrieved from NCBI
website.

NCBI provided 100 BLASTn benchmarks.

Multiple query/multiple db command line options
are:

> blastn_mic —task blastn —db ‘db/refseq_rna.00 db/refseq_rna.01
db/refseq_rna.02’ —query queries/blastn/NM_5_concat —-num_threads 180

Query model and Xeon® — XeonPhi ©® experiment

([

s, 77 Yem(s Phi(KNG) Xeon(s) Phifs) Phi-OFSparllelied(s)
1525Nbr threads L 3 180 3 180 180 query models:

153 query model #4:

154599 query/mdb 75 62 54.4 # concat query/multiple dhs
155,splitting queries IVT-KNC speedup

156589/10 guery/mdb 552 112 13 86 N5 dbs; refseq_ma.00-02

157,88/11 query/m db 544 196 <dift 4813 253

158/87/12 query/m b 576 8 m

159,84/15 query/m db 707 54 378

160581/18 guery/mdb 43 397 speedup speedup

161180/19 query/mdb 436 a7 30.4 138

1627920 query/m b 1519 B4 188

The 80 concatenated queries on Xeon (IVT) and 19 queries on KNC, in heterogeneous load
sharing model (#4) run concurrently in 41.7s and 39.4s respectively, as compared to all 99
concatenated queries on Xeon 54.4s. Here the speedup is 1.3x and ~1.4x for OFS parallelized

BLASTN: single query/single db (model #1)

B Mocaldisk/ccongdon/AmplProjects/BLAST - Intel VvTune Amplifier

= s o= dp Welcome roo9ah roolah '8l r003ah ro0Sah roosah

B Advanced Hotspots Hotspots viewpoint (change) ¢ Intel VTune Amplifier XE 2013

@ Ana is Target " Analysis ST Il <& Bottom-up [iES Caller,.fCalle »% Top-down Tree | | BB Tasks and Frames

Analyze Hot Subtrees

Grouping: | Core f Thread / Function J Call Stack = | | Tom |
Core /| Thread / Function / Call Stack ERLL NS Dl iz tions = Insrt‘gi?:;c;ns aO Fi::tle IE:rZU Module
Oidie @ Poor Ok B Iideal B Over :
P core_o s.0% [N 2-.518,600,000 0.3.. 0.639 0.999
Pcore_o 7.9% [25.605,800,000 0.0.. 0.537 0.997 =
Pcore_4 6.5% [23,376,600,000 0.2 .. 0.502 0.999
Icore_3 6.4% [23,108,800,000 0.2 .. 0.501 0.998
Pcore_1 6.3% [N 22,750,000,000 0.2 .. 0.501 0.997
Pcore_5 6.3% [22,742,200,000 0.2 .. 0.502 1.000
Pcore_2 6.3% [22,705,800,000 0.2 .. 0.502 1.000
Pcore_2 &.3% [22,916,400,000 0.2 .. 0.498 1.000
P core_7 6.3% [N 22,755,200,000 0.2 .. 0.501 1.000
P Selected 1 row(s): 8.0% 22,518,600,000 0.3.. 0.639 0.999 =
| [[>]]1< [[>]
ok 055 1s L1.55 25 2.55 35 3.55 4s 4.5s 5s 5.5 6s 6.5 7s 7.55 8 | | Thread

[] B Running

= [v] duk CPU Time
[+] duk Overhead...
1= Hardware E...

CPU Time
[+] s CPU Time
[~] duds Overhead...

blastn (0x108
blastn (0x108
blastn (0x108
blastn (0x108
blastn (0x108
blastn (0x108
blastn (0x108
blastn (0x108
blastn (0x108

Thread

hlastn (0w 1NR [z]
CPU Time ‘
i IBES
- + Process: LN ele=t |:| LOLGCEBH Ay Thread |:| (LT (T[= ~Any Module
(o | RS T ALY User/system functions |:| Inline Mode: (LT MV T Sl Functions only |:|

Clearly are visible the 3 sections on “CPU Time”. (1) preliminary search
(pthread parallelized), (2) traceback search (omp parallelized), and (3) output
formatting (serial)

Parallelizing OFS: strategy and implementation

|dentify top level loop and the one with most iterations (key loop)

Clone/initialize the “display’ (CDisplaySeqalign::) object one clone per
thread.

Break up key loop into NT iteration chunks (equalize workload)

|dentify key loop global object changing state per iteration and make NT
clones.

Spin up clones to a correct initial state.

Give each iteration chunk to one thread

Eliminate thread data contentions (mutexes) for maximum speed

Use LTS std::ostringstream object (STR_STREAM) per thread for output
Reduce NT STR_STREAM objects into the original NcbiOstrStream output

BLASTN: 5 concat queries on KNC running 180T (model #4

e o A = A K= s Pl Cache Usage TLe Hardware ... Hardw
Function / Call Stack CPU Time= Clockticks Retired Rate L1 misses L1 ... Estim Usa.. Lz_DATA_ ... L2_Ds
>[blastn_mic] 2071.780= [z.564,.863,847,290 851,650,000,000) 3.012 6,625,250,000 0.979 238.284 0.000 0.000 319,500,000 171,0
>[ibiomps.sal 74.410s | ©92,120,138.180 17.700.000,000 5.205 o 1.000 0.000 0.000 0.000 o EY
I Selected 1 row(s):) 2071.780s 2.564,.863.847.290 851.650.000.000 3.012| 6,625.250,000 0.979 238.284 0.000 0.000 319,500,000 171.0:
E [>l
1o Ok - e Y > 14s 1as 19s 20s 21s = |-
blastn_mic (T =
blastn_mic (T =
blastn_mic (T
blastn_mic (T
blastn_mic (T = H
blastn_mic (T =

blastn_mic (T

blastn_mic (T

blastn_mic (T

blastn_mic (T

Heau

blastn_mic (T

blastn_mic (T

blastn_mic (T

blastn_mic (T

blastn_mic (T

blastn_mic (T

blastn_mic (T

blastn_mic (T

Blastn mic (T

Hardware E...

Filter: 96.3%

g [26.3%] blastn_mic [] GGl ~ny Thread Ny Mod
User functions + 1 Inline M : B Functions only [~

>[blastn_mic_ofs] 2051.594s [N 2.539,873,809,805 853,150,000,000 2.977 6,669,250,000 0.979 233.229 0.000 0.000 319,500,000 166,01
>[libiomp5.so] 288.878s [l 357.630,536,445 72,700,000,000 4.919 0 1.000 0.000 0.000 0.000 o 2,5
Selected 1 row(s): 2051.594s 2,539,873,809,805 853,150,000,000 2.977 6,669,250,000 0.979 233.229 0.000 0.000 319,500,000 166,01
@
T Qb S e 1s 2s 3s 4s Ss 65 7s 8s 95 10os 1ds 125 13s 14s 155 1es 17s 18s 195 20 [T
blastn_mic_o

blastn_mic_o

blastn_mic_o

blastn_mic_o

blastn_mic_o

blastn_mic_o

blastn_mic_o

blastn_mic_o

blastn_mic_o

blastn_mic_o

Iiedu

blastn_mic_o

blastn_mic_o

blastn_mic_o

blastn_mic_o

blastn_mic_o

blastn_mic_o

blastn_mic_o

blastn_mic_o

blastn_mic_o

hinetm rmic o~

Hardware E...

Filter: 96.4%

(1) GAT parallelized, (2) output formatting section (OFS)
parallelized. i/o inhibited by writing output into /dev/null.

]

H

Any Thread IiEHH Any Module ~ -
Frncrinons nnby [

BLASTN: OFS parallelization re-arch

num_threads==> 180

BATCH SIZE=48000

loop: ©.811623s, accum[l]: ©.811623s

loop: ©.472755s, accum[2]: 1.28438s

loop: 2.01804s, accum[3]: 3.30242s

loop: ©.667808s, accum[4]: 3.970
]
1

=

loop: 0.0430953s, accum[5]:(4.01332s

real 21.84

(a) parallelized OFS: breakdown of time spent in key loop vs overhead introduced, (b) serial OFS: original loop timing

Things to try

* Resolve icc issue building blastp (workaround
identified)

* Reduce OFS parallelization overhead
— Current implementation of cloning maybe too heavy?

— try OMP "#pragma omp parallel
#pragma omp single
for{ e = |-=first; e ; @ = e-=next)
#pragma omp task
process(e);

* Parallelize GAT for blastp.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the
approximate performance of Intel products as measured by those tests. Any difference in system hardware or software
design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate
the performance of systems or components they are considering purchasing. For more information on performance tests
and on the performance of Intel products, reference www.intel.com/software/products.

Copyright © 2012, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core, VTune, and Cilk are
trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property
of others.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

intel.com/software/products

http://www.intel.com/software/products
http://intel.com/software/products

