Maximizing parallelizaton of BLAST: Output Formatting Section (OFS)

Albert Golembiowski, Ph.D. Intel[®] Corporation

Objectives

- get the last serial section (OFS) in runtime blast(n/p) to parallelize
- Improve throughput performance of the heterogeneous load sharing Xeon[®] – XeonPhi [®] model, for multiple concatenated queries and multiple db volumes (model #4).

Benchmark configurations

- Intel [®] Xeon [®] Two 12-Core E5-2697 v2, 2.7GHz (IVT)
- Intel [®] Xeon Phi[®] 7120A (KNC)
- BLAST version 2.2.29, code base retrieved from NCBI website.
- NCBI provided 100 BLASTn benchmarks.
- Multiple query/multiple db command line options are:

> blastn_mic -task blastn -db 'db/refseq_rna.00 db/refseq_rna.01 db/refseq_rna.02' -query queries/blastn/NM_5_concat -num_threads 180

Query model and Xeon[®] – XeonPhi[®] experiment

151		Xeon (s)			Phi (KNC)	Xeon (s)	Phi (s)		Phi-OFS p	arllelized (s)			
152 Nbr threads	24	48	}	180		48	180		180			query models:		
153 query model #4:														
154 99 query/m db	75	62	2			54.4						#4	concat query/multi	ple dbs
155 splitting queries IVT-KNC			speedup											
156 89/10 query/m db		55.2	2 1.12	22.3		48.6	23.5					<u>dbs:</u>	refseq_rna.00-02	
157 88/11 query/m db		54.4	1	196	<- cliff!	48.13	25.3							
158 87/12 query/m db				576		48	27.2							
159 84/15 query/m db				707		45.4	37.8							
160 81/18 query/m db						44.3	39.7	speedup		speedup				
161 80/19 query/m db						43.6	41.7	1.30	39.4	1.38				
162 79/20 query/m db				1519		43.4	48.8							

The 80 concatenated queries on Xeon (IVT) and 19 queries on KNC, in heterogeneous load sharing model (#4) run concurrently in 41.7s and 39.4s respectively, as compared to all 99 concatenated queries on Xeon 54.4s. Here the speedup is 1.3x and ~1.4x for OFS parallelized

BLASTN: single query/single db (model #1)

🧖 /localdisk/ccongdon/AmplProjects/BLAST - Intel VTune Amplifier 🗆 🔀											
	Welcome r009ah	r001ah 🗙	r003ah	r005ah	r008ah						
Advanced Hotspots Hotspots viewpoint (<u>change</u>) ⑦ Intel VTune Amplifier XE											
d 📵 Analysis Target 🗛 Analysis Type 🛍 Summary 😪 Bottom-up 🔄 Caller/Callee 😽 🚭 Top-down Tree 🔁 Tasks and Frames 🛛 🔊											
Grouping: Core / Thread / Eunction / Call Stack											
core / micad / function / ca											
Core / Thread / Function / Call Stack	CPU Time by Utilization		Instructions Retired	O ^I CPI a. Rate	CPU Fre Modu	le					
≥core 0	8.0%	22.518.600.000	0.3 0.639	0.999							
¢core 0	7.9%		26,605,800,000	0.0 0.537	0.997	=					
Pcore_4	6.5%		23,376,600,000	0.2 0.502	0.999						
¢core_3	6.4%		23,108,800,000	0.2 0.501	0.998						
¢core_1	6.3%		22,750,000,000	0.2 0.501	0.997						
¢core_5	6.3%		22,742,200,000	0.2 0.502	1.000						
¢core_2	6.3%		22,705,800,000	0.2 0.502	1.000						
¢core_2	6.3%		22,916,400,000	0.2 0.498	1.000						
¢core_7	6.3%		22,755,200,000	0.2 0.501	1.000						
Selected 1 row(s):		8.0%	22,518,600,000	0.3 0.639	0.999	~					
	< ···					>					
Q≈Q+Q-Q↔ 0.5s 1s 1.5s 2s 2.5s 3s 3.5s 4s 4.5s 5s 5.5s 6s 6.5s 7s 7.5s 8s											
blastn (0x108											
blastn (0x108											
blastn (0x108	ד blastn (0x108										
Blastn (0x108											
E blastn (0x108											
blastn (0x108)											
blastn (0x108	安 节 1 1				<u> </u>						
CPU Time											
No filterr are applied . Duraces Any Duraces . Thursdy Any Thursdy											
No filters are applied. Process: Any Process											
Call Stack Mode: User/system functions 🔽 Inline Mode: on 🔽 Loop Mode: Functions only											

Clearly are visible the 3 sections on "CPU Time". (1) preliminary search (pthread parallelized), (2) traceback search (omp parallelized), and (3) output formatting (serial)

INTEL CONFIDENTIAL

Parallelizing OFS: strategy and implementation

- Identify top level loop and the one with most iterations (key loop)
- Clone/initialize the `display' (CDisplaySeqalign::) object one clone per thread.
- Break up key loop into NT iteration chunks (equalize workload)
- Identify key loop global object changing state per iteration and make NT clones.
- Spin up clones to a correct initial state.
- Give each iteration chunk to one thread
- Eliminate thread data contentions (mutexes) for maximum speed
- Use LTS std::ostringstream object (STR_STREAM) per thread for output
- Reduce NT STR_STREAM objects into the original NcbiOstrStream output

BLASTN: 5 concat queries on KNC running 180T (model #4)

(1) GAT parallelized, (2) output formatting section (OFS) parallelized. i/o inhibited by writing output into /dev/null.

INTEL CONFIDENTIAL

BLASTN: OFS parallelization re-arch

hum_threads=>> 180 BATCH_SIZE=48000 init clone: 0.0256393s, accum: 0.0256393s, spin-up: 0.117371s, accum: 0.117371s, loop: 0.245998s, accum: 0.245998s, tot: accum[1]: 0.389008s init clone: 0.0278367s, accum: 0.0534759s, spin-up: 0.119167s, accum: 0.236538s, loop: 0.223623s, accum: 0.469621s, tot: accum[2]: 0.759634s init clone: 0.0372947s, accum: 0.0907706s, spin-up: 0.116794s, accum: 0.353332s, loop: 0.245675s, accum: 0.715296s, tot: accum[3]: 1.1594s init clone: 0.0473601s, accum: 0.138131s, spin-up: 0.130151s, accum: 0.483482s, loop: 0.240578s, accum: 0.955875s, tot: accum[4]: 1.57749s init clone: 0.00508033s, accum: 0.143211s, spin-up: 0.0161471s, accum: 0.499629s, loop: 0.025214s, accum: 0.981089s, tot: accum[5 eal 20.08

(a) parallelized OFS: breakdown of time spent in key loop vs overhead introduced, (b) serial OFS: original loop timing

Things to try

- Resolve icc issue building blastp (workaround identified)
- Reduce OFS parallelization overhead
 - Current implementation of cloning maybe too heavy?

```
— try omp #pragma omp parallel
#pragma omp single
for( e = I->first; e ; e = e->next )
#pragma omp task
process(e);
```

• Parallelize GAT for blastp.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, reference <u>www.intel.com/software/products</u>.

Copyright ° 2012, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core, VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804