

Python based software on MIC

Jussi Enkovaara Senior Application Scientist CSC – IT Center for Science Espoo, Finland

What's unique about my tuning work

GPAW, wiki.fysik.dtu.dk/gpaw/

- Python based open source software for electronic structure calculations in materials and nanoscience
- > High level algorithms in Python, kernels in C or in libraries
- Native / offload execution
- Intel compilers, Vtune, Python profile module

Performance

Significant amount of time is spent in BLAS routines

- > Matrix multiplications with very skew matrices (*i.e* $64^3 \times 512$)
- No benefits from automatic offload by MKL
- Porting Python to MIC for native execution
 - > In native mode, serial bottlenecks kill the performance
- Special pyMIC module for offloading (collaboration with M. Klemm)
 - Allocation of arrays on device from Python and data transfers between host and device
 - Launching offload kernels from Python code
 - First results promising, specific parts of a calculation can be accelerated by a factor of 2-6

Insights

- Amdahl's law restricts severely usability of native execution
- Minimizing data transfer between host and device is critical for offload performance
- Remaining challenges:
 - Efficient MIC versions for key C-kernels
 - > MPI version of GPAW supporting multiple devices