
Supporting PGAS Models (UPC and OpenSHMEM)
on MIC Clusters

Dhabaleswar K. (DK) Panda
The Ohio State University

E-mail: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

Khaled Hamidouche
The Ohio State University

E-mail: hamidouc@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~hamidouc

Presentation at IXPUG Meeting, July 2014
by

http://www.cse.ohio-state.edu/%7Epanda
http://www.cse.ohio-state.edu/%7Epotluri
http://www.cse.ohio-state.edu/%7Epotluri
http://www.cse.ohio-state.edu/%7Epotluri
http://www.cse.ohio-state.edu/%7Epotluri

2

Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory

Logical shared memory

Shared Memory Model

DSM
Distributed Memory Model

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

Global Arrays, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems
– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• Additionally, OpenMP can be used to parallelize computation
within the node

• Each model has strengths and drawbacks - suite different problems or
applications

IXPUG14-OSU-PGAS

3

Partitioned Global Address Space (PGAS) Models

IXPUG14-OSU-PGAS

• Key features
- Simple shared memory abstractions

- Light weight one-sided communication

- Easier to express irregular communication

• Different approaches to PGAS

- Languages
• Unified Parallel C (UPC)

• Co-Array Fortran (CAF)

• X10

• Chapel

- Libraries
• OpenSHMEM

• Global Arrays

SHMEM

• SHMEM: Symmetric Hierarchical MEMory library

• One-sided communications library – had been around for a while

• Similar to MPI, processes are called PEs, data movement is explicit through
library calls

• Provides globally addressable memory using symmetric memory objects
(more in later slides)

• Library routines for

– Symmetric object creation and management

– One-sided data movement

– Atomics

– Collectives

– Synchronization

IXPUG14-OSU-PGAS 4

OpenSHMEM

• SHMEM implementations – Cray SHMEM, SGI SHMEM, Quadrics SHMEM, HP
SHMEM, GSHMEM

• Subtle differences in API, across versions – example:

 SGI SHMEM Quadrics SHMEM Cray SHMEM

Initialization start_pes(0) shmem_init start_pes

Process ID _my_pe my_pe shmem_my_pe

• Made application codes non-portable

• OpenSHMEM is an effort to address this:

“A new, open specification to consolidate the various extant SHMEM versions

into a widely accepted standard.” – OpenSHMEM Specification v1.0

by University of Houston and Oak Ridge National Lab

SGI SHMEM is the baseline
IXPUG14-OSU-PGAS 5

• UPC: a parallel extension to the C standard
• UPC Specifications and Standards:

– Introduction to UPC and Language Specification, 1999
– UPC Language Specifications, v1.0, Feb 2001
– UPC Language Specifications, v1.1.1, Sep 2004
– UPC Language Specifications, v1.2, June 2005
– UPC Language Specifications, v1.3, Nov 2013

• UPC Consortium
– Academic Institutions: GWU, MTU, UCB, U. Florida, U. Houston, U. Maryland…
– Government Institutions: ARSC, IDA, LBNL, SNL, US DOE…
– Commercial Institutions: HP, Cray, Intrepid Technology, IBM, …

• Supported by several UPC compilers
– Vendor-based commercial UPC compilers: HP UPC, Cray UPC, SGI UPC
– Open-source UPC compilers: Berkeley UPC, GCC UPC, Michigan Tech MuPC

• Aims for: high performance, coding efficiency, irregular applications, …

IXPUG14-OSU-PGAS 6

Compiler-based: Unified Parallel C

• Hierarchical architectures with multiple address spaces

• (MPI + PGAS) Model
– MPI across address spaces

– PGAS within an address space

• MPI is good at moving data between address spaces

• Within an address space, MPI can interoperate with other shared
memory programming models

• Applications can have kernels with different communication patterns

• Can benefit from different models

• Re-writing complete applications can be a huge effort

• Port critical kernels to the desired model instead

IXPUG14-OSU-PGAS 7

MPI+PGAS for Exascale Architectures and Applications

Hybrid (MPI+PGAS) Programming

• Application sub-kernels can be re-written in MPI/PGAS based
on communication characteristics

• Benefits:
– Best of Distributed Computing Model

– Best of Shared Memory Computing Model

• Exascale Roadmap*:
– “Hybrid Programming is a practical way to

 program exascale systems”

* The International Exascale Software Roadmap, Dongarra, J., Beckman, P. et al., Volume 25, Number 1, 2011,
International Journal of High Performance Computer Applications, ISSN 1094-3420

Kernel 1
MPI

Kernel 2
MPI

Kernel 3
MPI

Kernel N
MPI

HPC Application

Kernel 2
PGAS

Kernel N
PGAS

IXPUG14-OSU-PGAS 8

• High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP, and RDMA
over Converged Enhanced Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002

– MVAPICH2-X (MPI + PGAS), Available since 2012

– Support for GPGPUs and MIC

– Used by more than 2,150 organizations (HPC Centers, Industry and Universities)
in 72 countries

– More than 218,000 downloads from OSU site directly

– Empowering many TOP500 clusters
• 7th ranked 519,640-core cluster (Stampede) at TACC

• 11th ranked 74,358-core cluster (Tsubame 2.5) at Tokyo Institute of Technology

• 16th ranked 96,192-core cluster (Pleiades) at NASA and many others

– Available with software stacks of many IB, HSE, and server vendors including
Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Partner in the U.S. NSF-TACC Stampede System

MVAPICH2/MVAPICH2-X Software

9 IXPUG14-OSU-PGAS

http://mvapich.cse.ohio-state.edu/

MVAPICH2-X for Hybrid MPI + PGAS Applications

IXPUG14-OSU-PGAS 10

MPI Applications, OpenSHMEM Applications, UPC
Applications, Hybrid (MPI + PGAS) Applications

Unified MVAPICH2-X Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI Calls UPC Calls

• Unified communication runtime for MPI, UPC, OpenSHMEM available with
MVAPICH2-X 1.9 onwards!
– http://mvapich.cse.ohio-state.edu

• Feature Highlights
– Supports MPI(+OpenMP), OpenSHMEM, UPC, MPI(+OpenMP) + OpenSHMEM,

MPI(+OpenMP) + UPC
– MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 standard

compliant (with initial support for UPC 1.3)
– Scalable Inter-node and intra-node communication – point-to-point and collectives

http://mvapich.cse.ohio-state.edu/overview/mvapich2x

• OpenSHMEM and UPC for Host

• Hybrid MPI + PGAS (OpenSHMEM and UPC) for Host

• OpenSHMEM for MIC

• UPC for MIC

IXPUG14-OSU-PGAS

Outline

11

OpenSHMEM Design in MVAPICH2-X

• OpenSHMEM Stack based on OpenSHMEM Reference Implementation

• OpenSHMEM Communication over MVAPICH2-X Runtime
– Uses active messages, atomic and one-sided operations and remote

registration cache

Communication API
Symmetric Memory

Management API

Minimal Set of Internal API

OpenSHMEM API

InfiniBand, RoCE, iWARP

Data
Movement Collectives Atomics Memory

Management

Active
Messages

One-sided
Operations

MVAPICH2-X Runtime

 Remote
Atomic Ops

Enhanced
Registration Cache

IXPUG14-OSU-PGAS 12

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance
Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012.

OpenSHMEM Collective Communication Performance

13

Reduce (1,024 processes) Broadcast (1,024 processes)

Collect (1,024 processes) Barrier

0
50

100
150
200
250
300
350
400

128 256 512 1024 2048

Ti
m

e
(u

s)

No. of Processes

1
10

100
1000

10000
100000

1000000
10000000

Ti
m

e
(u

s)

Message Size

180X

1

10

100

1000

10000

4 16 64 256 1K 4K 16K 64K 256K

Ti
m

e
(u

s)

Message Size

18X

1

10

100

1000

10000

100000

1 4 16 64 256 1K 4K 16K 64K

Ti
m

e
(u

s)

Message Size

MV2X-SHMEM
Scalable-SHMEM
OMPI-SHMEM

12X

3X

IXPUG14-OSU-PGAS

OpenSHMEM Application Evaluation

14

0

100

200

300

400

500

600

256 512

Ti
m

e
(s

)

Number of Processes

UH-SHMEM

OMPI-SHMEM (FCA)

Scalable-SHMEM (FCA)

MV2X-SHMEM

0

10

20

30

40

50

60

70

80

256 512

Ti
m

e
(s

)

Number of Processes

UH-SHMEM

OMPI-SHMEM (FCA)

Scalable-SHMEM (FCA)

MV2X-SHMEM

Heat Image Daxpy

• Improved performance for OMPI-SHMEM and Scalable-SHMEM with FCA
• Execution time for 2DHeat Image at 512 processes (sec):

- UH-SHMEM – 523, OMPI-SHMEM – 214, Scalable-SHMEM – 193, MV2X-
SHMEM – 169

• Execution time for DAXPY at 512 processes (sec):
- UH-SHMEM – 57, OMPI-SHMEM – 56, Scalable-SHMEM – 9.2, MV2X-

SHMEM – 5.2
 J. Jose, J. Zhang, A. Venkatesh, S. Potluri, and D. K. Panda, A Comprehensive Performance Evaluation of OpenSHMEM Libraries

on InfiniBand Clusters, OpenSHMEM Workshop (OpenSHMEM’14), March 2014

IXPUG14-OSU-PGAS

MVAPICH2-X Support for Berkeley UPC Runtime

• GASNet (Global-Address Space Networking) is a language-independent, low-
level networking layer that provides support for PGAS language

• Support multiple networks through different conduit: MVAPICH2-X Conduit
is available in MVAPICH2-X release, which support UPC/OpenMP/MPI on
InfiniBand

IXPUG14-OSU-PGAS 15

UPC Applications

Compiler-generated Code

Compiler-specific Runtime

 GASNet Core APIs

Extended APIs

SMP Conduit MPI Conduit MXM Conduit MVAPICH2-X Conduit …

High-level operations
such as remote memory

access and various
collective operations

Heavily based on active
messages; directly on
top of each individual
network architectures

IB Conduit

IXPUG14-OSU-PGAS
16

UPC Collectives Performance
Broadcast (2048 processes) Scatter (2048 processes)

Gather (2048 processes) Exchange (2048 processes)

0
2000
4000
6000
8000

10000
12000
14000

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

Ti
m

e
(u

s)

Message Size

UPC-GASNet
UPC-OSU

0

50

100

150

200

250

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

Ti
m

e
(m

s)

Message Size

UPC-GASNet

UPC-OSU

0

50

100

150

200

250

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

Ti
m

e
(m

s)

Message Size

UPC-GASNet

UPC-OSU 2X

0
500

1000
1500
2000
2500
3000
3500

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

Ti
m

e
(m

s)

Message Size

UPC-GASNet
UPC-OSU

25X

2X

35%

J. Jose, K. Hamidouche, J. Zhang, A. Venkatesh, and D. K. Panda, Optimizing Collective Communication in UPC (HiPS’14, in
association with IPDPS’14)

• OpenSHMEM and UPC for Host

• Hybrid MPI + PGAS (OpenSHMEM and UPC) for Host

• OpenSHMEM for MIC

• UPC for MIC

IXPUG14-OSU-PGAS

Outline

17

Unified Runtime for Hybrid MPI + OpenSHMEM Applications

IXPUG14-OSU-PGAS 18

MPI Applications, OpenSHMEM Applications,
Hybrid (MPI + OpenSHMEM) Applications

MVAPICH2-X Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI Calls

Hybrid (OpenSHMEM + MPI) Applications

OpenSHMEM
Runtime

MPI Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI Calls

• Optimal network resource usage
• No deadlock because of single runtime
• Better performance

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance
Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012.

IXPUG14-OSU-PGAS 19

Hybrid MPI+OpenSHMEM Graph500 Design
Execution Time

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming Models,
International Supercomputing Conference (ISC’13), June 2013

0
1
2
3
4
5
6
7
8
9

26 27 28 29

Bi
lli

on
s

of
 T

ra
ve

rs
ed

 E
dg

es
 P

er

Se
co

nd
 (T

EP
S)

Scale

MPI-Simple
MPI-CSC
MPI-CSR
Hybrid(MPI+OpenSHMEM)

0
1
2
3
4
5
6
7
8
9

1024 2048 4096 8192

Bi
lli

on
s

of
 T

ra
ve

rs
ed

 E
dg

es
 P

er

Se
co

nd
 (T

EP
S)

of Processes

MPI-Simple
MPI-CSC
MPI-CSR
Hybrid(MPI+OpenSHMEM)

Strong Scalability

Weak Scalability

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and
Performance Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012

0
5

10
15
20
25
30
35

4K 8K 16K

Ti
m

e
(s

)

No. of Processes

MPI-Simple
MPI-CSC
MPI-CSR
Hybrid (MPI+OpenSHMEM)

13X

7.6X

• Performance of Hybrid (MPI+OpenSHMEM)
Graph500 Design

• 8,192 processes
 - 2.4X improvement over MPI-CSR
 - 7.6X improvement over MPI-Simple
• 16,384 processes
 - 1.5X improvement over MPI-CSR
 - 13X improvement over MPI-Simple
 J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM

Programming Models, International Supercomputing Conference (ISC’13), June 2013

Hybrid MPI+UPC NAS-FT

• Modified NAS FT UPC all-to-all pattern using MPI_Alltoall
• Truly hybrid program
• For FT (Class C, 128 processes)

• 34% improvement over UPC (GASNet)
• 30% improvement over UPC (MV2-X)

 20

0

5

10

15

20

25

30

35

B-64 C-64 B-128 C-128

Ti
m

e
(s

)

NAS Problem Size – System Size

34%

J. Jose, M. Luo, S. Sur and D. K. Panda, Unifying UPC and MPI Runtimes: Experience with MVAPICH, Fourth
Conference on Partitioned Global Address Space Programming Model (PGAS '10), October 2010

UPC (GASNet)

UPC (MV2-X)

MPI+UPC (MV2-X)

J. Jose, M. Luo, S. Sur and D. K. Panda, Unifying UPC and MPI Runtimes: Experience with MVAPICH, Int'l Conference on
Partitioned Global Address Space Programming Models (PGAS) 2010

IXPUG14-OSU-PGAS

• OpenSHMEM and UPC for Host

• Hybrid MPI + PGAS (OpenSHMEM and UPC) for Host

• OpenSHMEM for MIC

• UPC for MIC

IXPUG14-OSU-PGAS

Outline

21

HPC Applications on MIC Clusters
• Flexibility in launching HPC jobs on Xeon Phi Clusters

Xeon Xeon Phi

Multi-core Centric

Many-core Centric

OpenSHMEM
Program

OpenSHMEM
Program

Offloaded
Computation

OpenSHMEM
Program

OpenSHMEM
Program

OpenSHMEM
Program

Host-only

Offload
(/reverse Offload)

Symmetric

Coprocessor-only

IXPUG14-OSU-PGAS 22

Data Movement on Intel Xeon Phi Clusters

CPU CPU
QPI

M
IC

PC
Ie

M

IC

M
IC

CPU

M
IC

IB

Node 0 Node 1 1. Intra-Socket
2. Inter-Socket
3. Inter-Node
4. Intra-MIC
5. Intra-Socket MIC-MIC
6. Inter-Socket MIC-MIC
7. Inter-Node MIC-MIC
8. Intra-Socket MIC-Host

10. Inter-Node MIC-Host
9. Inter-Socket MIC-Host

OpenSHMEM Process

11. Inter-Node MIC-MIC with IB on remote socket

and more . . .

• Critical for runtimes to optimize data movement, hiding the complexity

IXPUG14-OSU-PGAS 23

Need for Non-Uniform Memory Allocation in
OpenSHMEM

• MIC cores have limited

 memory per core

• OpenSHMEM relies on
symmetric memory,
allocated using shmalloc()

• shmalloc() allocates same amount of memory on all PEs

• For applications running in symmetric mode, this limits the total heap
size

• Similar issues for applications (even host-only) with memory load
imbalance (Graph500, Out-of-Core Sort, etc.)

• How to allocate different amounts of memory on host and MIC cores,
and still be able to communicate?

Memory per core

IXPUG14-OSU-PGAS 24

OpenSHMEM Design for MIC Clusters

• Non-Uniform Memory Allocation:
– Team-based Memory Allocation

(Proposed Extensions)

– Address Structure for non-uniform memory allocations

IXPUG14-OSU-PGAS 25

 HOST2

Proxy-based designs for OpenSHMEM

OpenSHMEM Put using Active Proxy OpenSHMEM Get using Active Proxy

 HOST1

MIC1
H
C
A

HOST2

MIC2
H
C
A

(1) IB REQ

(2) SCIF
Read

(2) IB
Write

(3) IB
 FIN

 HOST1

MIC1
H
C
A

MIC2
H
C
A

(3) IB
FIN

(2) SCIF
Read

(2) IB
Write

(1) IB
REQ

• Current generation architectures impose limitations on read bandwidth when
HCA reads from MIC memory

– Impacts both put and get operation performance
• Solution: Pipelined data transfer by proxy running on host using IB and SCIF

channels
• Improves latency and bandwidth!

IXPUG14-OSU-PGAS 26

OpenSHMEM Put/Get Performance

OpenSHMEM Put Latency OpenSHMEM Get Latency

0

500

1000

1500

2000

2500

3000

3500

4000

4500
1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M 4M

La
te

nc
y

(u
s)

Message Size

MV2X-Def
MV2X-Opt

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M 4M

La
te

nc
y

(u
s)

Message Size

MV2X-Def

MV2X-Opt

• Proxy-based designs alleviate hardware limitations
• Put Latency of 4M message: Default: 3911us, Optimized: 838us
• Get Latency of 4M message: Default: 3889us, Optimized: 837us

4.5X 4.6X

IXPUG14-OSU-PGAS 27

OpenSHMEM Collectives Performance

0

1000

2000

3000

4000

5000

6000

7000

4 16 64 256 1K 4K 16K 64K 256K

La
te

nc
y

(u
s)

Message Size

MV2X-Def

MV2X-Opt

0

1000

2000

3000

4000

5000

6000

7000

4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

La
te

nc
y

(u
s)

Message Size

MV2X-Def

MV2X-Opt

Broadcast Latency (1,024 processes) Reduce Latency (1,024 processes)

• Optimized designs for OpenSHMEM collective operations
• Broadcast Latency of 256KB message at 1,024 processes:

– Default: 5955us, Optimized: 2268us

• Reduce Latency of 256KB message at 1,024 processes:
– Default: 6581us, Optimized: 3294us

2.6X 1.9X

IXPUG14-OSU-PGAS 28

Performance Evaluations using Graph500

Native Mode (8 procs/MIC) Symmetric Mode (16 Host+16MIC)

• Graph500 Execution Time (Native Mode):
– At 512 processes , Default: 5.17s, Optimized: 4.96s
– Performance Improvement from MIC-aware collectives design

• Graph500 Execution Time (Symmetric Mode):
– At 1,024 processes, Default: 15.91s, Optimized: 12.41s
– Performance Improvement from MIC-aware collectives and proxy-based designs

0

1

2

3

4

5

6

64 128 256 512

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Processes

MV2X-Def

MV2X-Opt

0

5

10

15

20

25

128 256 512 1024

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Processes

MV2X-Def

MV2X-Opt

28%

IXPUG14-OSU-PGAS 29

Graph500 Evaluations with Extensions

• Redesigned Graph500 using MIC to overlap computation/communication
– Data Transfer to MIC memory; MIC cores pre-processes received data
– Host processes traverses vertices, and sends out new vertices

• Graph500 Execution time at 1,024 processes:
– Host-Only: .33s, Host+MIC with Extensions: .26s

• Magnitudes of improvement compared to default symmetric mode
– Default Symmetric Mode: 12.1s, Host+MIC Extensions: 0.16s

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

128 256 512 1024

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Processes

Host
Host+MIC (extensions)

26%

J. Jose, K. Hamidouche, X. Lu, S. Potluri, J. Zhang, K. Tomko and D. K. Panda, High Performance OpenSHMEM for Intel MIC
Clusters: Extensions, Runtime Designs and Application Co-Design, IEEE International Conference on Cluster Computing
(CLUSTER '14) (Best Paper Nominee)

IXPUG14-OSU-PGAS 30

• OpenSHMEM and UPC for Host

• Hybrid MPI + PGAS (OpenSHMEM and UPC) for Host

• OpenSHMEM for MIC

• UPC for MIC

IXPUG14-OSU-PGAS

Outline

31

HPC Applications on MIC Clusters
• Flexibility in launching HPC jobs on Xeon Phi Clusters

Xeon Xeon Phi

Multi-core Centric

Many-core Centric

UPC Program

UPC Program Offloaded
Computation

UPC Program UPC Program

UPC Program

Host-only

Offload
(/reverse Offload)

Symmetric

Coprocessor-only

IXPUG14-OSU-PGAS 32

UPC on MIC clusters

33

• Process Model
– Communication via shared memory – single copy/double copy

– One connection per process

– Drawbacks: Communication Overheads, Network Connections

• Thread Model
– Direct access to shared array: same memory space

– No extra copy

– No shared memory mapping entries

– Drawback: sharing of network connections

– Our work on multi-endpoint addresses this issue

IXPUG14-OSU-PGAS

M. Luo, J. Jose, S. Sur and D. K. Panda, Multi-threaded UPC Runtime with Network Endpoints: Design Alternatives and
Evaluation on Multi-core Architectures, Int'l Conference on High Performance Computing (HiPC '11), Dec. 2011

UPC Runtime on MIC:
Remote Memory Access between Host and MIC

34

Leader-to-all connection mode

Global Memory Region
on MIC

Intel Xeon Phi
Co-Processors Intel Xeon

CPU

CPU

CPU

CPU

Pin-down the whole global
memory region

• Original connection mode: Each UPC thread pins down the global memory region
that has affinity with this UPC thread; Establish all-to-all connections between
every pair of UPC threads between MIC and host

• Leader-to-all connection mode: Only one UPC thread pinned down the whole
global memory space on MIC; all UPC threads on the host will get access with the
leader UPC thread

• Connections: NMIC*NHOST -> NMIC+NHOST

Global Memory Region
on MIC

Intel Xeon Phi
Co-Processors Intel Xeon

CPU

CPU

CPU

CPU

Original all-to-all connection mode

IXPUG14-OSU-PGAS

UPC Runtime on MIC:
Remote Memory Access between Host and MIC

35

• Process-based Runtime: The whole global memory region need to
be mapped as shared memory region, such as PSHM

• Thread-based Runtime: As the threads share the same memory
space, the leader can access other global memory region on MIC
without mapping to shared memory

Global Memory Region
on MIC

Intel Xeon Phi
Co-Processors Intel Xeon

CPU

CPU

CPU

CPU

IXPUG14-OSU-PGAS

Application Benchmark Evaluation for Native Mode

36

0

10

20

30

40

50

60

CG.B EP.B FT.B IS.B MG.B

native-host

native-MIC

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

RandomAccess UTS

2.6X

4X

• Host and MIC are occupied with 16 and 60 UPC threads, respectively
• MIC performs 80%, 67%, and 54% as 16-CPU host for MG, EP, and FT, respectively
• For communication-intensive benchmarks CG and IS, MIC spends 7x and 3x execution

times
• Default applications without modification – no representation of optimal

performance

IXPUG14-OSU-PGAS

M. Luo, M. Li, A. Venkatesh, X. Lu and D. K. Panda, UPC on MIC: Early Experiences with Native and Symmetric Modes, Int'l
Conference on Partitioned Global Address Space Programming Models (PGAS '13), October 2013.

Concluding Remarks

• HPC Systems are evolving to support growing needs of exascale
applications

• Hybrid programming (MPI + PGAS) is a practical way to program
exascale systems

• Presented designs to demonstrate performance potential of PGAS
and hybrid MPI+PGAS models

• MIC support for OpenSHMEM and UPC will be available in future
MVAPICH2-X releases

IXPUG14-OSU-PGAS 37

Funding Acknowledgments

Funding Support by

Equipment Support by

38 IXPUG14-OSU-PGAS

IXPUG14-OSU-PGAS

Personnel Acknowledgments
Current Students

– S. Chakraborthy (Ph.D.)

– N. Islam (Ph.D.)

– J. Jose (Ph.D.)

– M. Li (Ph.D.)

– R. Rajachandrasekhar (Ph.D.)

Past Students
– P. Balaji (Ph.D.)

– D. Buntinas (Ph.D.)

– S. Bhagvat (M.S.)

– L. Chai (Ph.D.)

– B. Chandrasekharan (M.S.)

– N. Dandapanthula (M.S.)

– V. Dhanraj (M.S.)

– T. Gangadharappa (M.S.)

– K. Gopalakrishnan (M.S.)

– G. Santhanaraman (Ph.D.)

– A. Singh (Ph.D.)

– J. Sridhar (M.S.)

– S. Sur (Ph.D.)

– H. Subramoni (Ph.D.)

– K. Vaidyanathan (Ph.D.)

– A. Vishnu (Ph.D.)

– J. Wu (Ph.D.)

– W. Yu (Ph.D.)

39

Past Research Scientist
– S. Sur

Current Post-Docs
– K. Hamidouche

– J. Lin

Current Programmers
– M. Arnold

– J. Perkins

Past Post-Docs
– H. Wang

– X. Besseron

– H.-W. Jin

– M. Luo

– W. Huang (Ph.D.)

– W. Jiang (M.S.)

– S. Kini (M.S.)

– M. Koop (Ph.D.)

– R. Kumar (M.S.)

– S. Krishnamoorthy (M.S.)

– K. Kandalla (Ph.D.)

– P. Lai (M.S.)

– J. Liu (Ph.D.)

– M. Luo (Ph.D.)

– A. Mamidala (Ph.D.)

– G. Marsh (M.S.)

– V. Meshram (M.S.)

– S. Naravula (Ph.D.)

– R. Noronha (Ph.D.)

– X. Ouyang (Ph.D.)

– S. Pai (M.S.)

– S. Potluri (Ph.D.)

– M. Rahman (Ph.D.)

– D. Shankar (Ph.D.)

– R. Shir (Ph.D.)

– A. Venkatesh (Ph.D.)

– J. Zhang (Ph.D.)

– E. Mancini

– S. Marcarelli

– J. Vienne

Current Senior Research Associates
– H. Subramoni

– X. Lu

Past Programmers
– D. Bureddy

Web Pointers

http://www.cse.ohio-state.edu/~panda
http://www.cse.ohio-state.edu/~hamidouc

http://nowlab.cse.ohio-state.edu

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu

panda@cse.ohio-state.edu
hamidouc@cse.ohio-state.edu

40 IXPUG14-OSU-PGAS

http://www.cse.ohio-state.edu/%7Epanda
http://www.cse.ohio-state.edu/%7Epanda
http://www.cse.ohio-state.edu/%7Epanda
http://www.cse.ohio-state.edu/%7Epanda
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:hamidouc@cse.ohio-state.edu
mailto:hamidouc@cse.ohio-state.edu
mailto:hamidouc@cse.ohio-state.edu

	Supporting PGAS Models (UPC and OpenSHMEM) �on MIC Clusters
	Parallel Programming Models Overview
	Partitioned Global Address Space (PGAS) Models
	SHMEM
	OpenSHMEM
	Compiler-based: Unified Parallel C
	MPI+PGAS for Exascale Architectures and Applications
	Hybrid (MPI+PGAS) Programming
	MVAPICH2/MVAPICH2-X Software
	MVAPICH2-X for Hybrid MPI + PGAS Applications
	Outline
	OpenSHMEM Design in MVAPICH2-X
	OpenSHMEM Collective Communication Performance
	OpenSHMEM Application Evaluation
	MVAPICH2-X Support for Berkeley UPC Runtime
	UPC Collectives Performance
	Outline
	Unified Runtime for Hybrid MPI + OpenSHMEM Applications
	Hybrid MPI+OpenSHMEM Graph500 Design
	Hybrid MPI+UPC NAS-FT
	Outline
	HPC Applications on MIC Clusters
	Data Movement on Intel Xeon Phi Clusters
	Need for Non-Uniform Memory Allocation in OpenSHMEM
	OpenSHMEM Design for MIC Clusters
	Proxy-based designs for OpenSHMEM
	OpenSHMEM Put/Get Performance
	OpenSHMEM Collectives Performance
	Performance Evaluations using Graph500
	Graph500 Evaluations with Extensions
	Outline
	HPC Applications on MIC Clusters
	UPC on MIC clusters
	UPC Runtime on MIC:�Remote Memory Access between Host and MIC
	UPC Runtime on MIC:�Remote Memory Access between Host and MIC
	Application Benchmark Evaluation for Native Mode
	Concluding Remarks
	Funding Acknowledgments
	Personnel Acknowledgments
	Web Pointers

