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Parallel Programming Models Overview 

P1 P2 P3 

Shared Memory 

P1 P2 P3 

Memory Memory Memory 

P1 P2 P3 

Memory Memory Memory 

Logical shared memory 

Shared Memory Model 

DSM 
Distributed Memory Model  

MPI (Message Passing Interface) 

Partitioned Global Address Space (PGAS) 

Global Arrays, UPC, Chapel, X10, CAF, … 

• Programming models provide abstract machine models 

• Models can be mapped on different types of systems 
– e.g. Distributed Shared Memory (DSM), MPI within a node, etc. 

• Additionally, OpenMP can be used to parallelize computation  
within the node 

• Each model has strengths and drawbacks - suite different problems or 
applications 
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Partitioned Global Address Space (PGAS) Models 

IXPUG14-OSU-PGAS 

• Key features 
- Simple shared memory abstractions  

- Light weight one-sided communication  

- Easier to express irregular communication 

• Different approaches to PGAS  

- Languages  
• Unified Parallel C (UPC) 

• Co-Array Fortran (CAF) 

• X10 

• Chapel  

- Libraries 
• OpenSHMEM 

• Global Arrays 



SHMEM 

• SHMEM: Symmetric Hierarchical MEMory library 

• One-sided communications library – had been around for a while  

• Similar to MPI, processes are called PEs, data movement is explicit through 
library calls 

• Provides globally addressable memory using symmetric memory objects 
(more in later slides)  

• Library routines for  

– Symmetric object creation and management 

– One-sided data movement 

– Atomics 

– Collectives 

– Synchronization 
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OpenSHMEM 

• SHMEM implementations – Cray SHMEM, SGI SHMEM, Quadrics SHMEM, HP 
SHMEM, GSHMEM 

• Subtle differences in API, across versions – example:  

                             SGI SHMEM            Quadrics SHMEM             Cray SHMEM  

Initialization        start_pes(0)                  shmem_init  start_pes    

Process ID              _my_pe                           my_pe                     shmem_my_pe 

• Made application codes non-portable  

• OpenSHMEM is an effort to address this:  

“A new, open specification to consolidate the various extant SHMEM versions  

into a widely accepted standard.” – OpenSHMEM Specification v1.0 

by University of Houston and Oak Ridge National Lab 

SGI SHMEM is the baseline 
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• UPC: a parallel extension to the C standard 
• UPC Specifications and Standards: 

– Introduction to UPC and Language Specification, 1999 
– UPC Language Specifications, v1.0, Feb 2001 
– UPC Language Specifications, v1.1.1, Sep 2004 
– UPC Language Specifications, v1.2, June 2005 
– UPC Language Specifications, v1.3, Nov 2013 

• UPC Consortium 
– Academic Institutions: GWU, MTU, UCB, U. Florida, U. Houston, U. Maryland… 
– Government Institutions: ARSC, IDA, LBNL, SNL, US DOE… 
– Commercial Institutions: HP, Cray, Intrepid Technology, IBM, … 

• Supported by several UPC compilers 
– Vendor-based commercial UPC compilers: HP UPC, Cray UPC, SGI UPC 
– Open-source UPC compilers: Berkeley UPC, GCC UPC, Michigan Tech MuPC 

• Aims for: high performance, coding efficiency, irregular applications, … 
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Compiler-based: Unified Parallel C 



• Hierarchical architectures with multiple address spaces 

• (MPI + PGAS) Model 
– MPI across address spaces 

– PGAS within an address space 

• MPI is good at moving data between address spaces 

• Within an address space, MPI can interoperate with other shared 
memory programming models  

 

• Applications can have kernels with different communication patterns 

• Can benefit from different models 

 

• Re-writing complete applications can be a huge effort 

• Port critical kernels to the desired model instead 
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MPI+PGAS for Exascale Architectures and Applications 



Hybrid (MPI+PGAS) Programming 

• Application sub-kernels can be re-written in MPI/PGAS based 
on communication characteristics 

• Benefits: 
– Best of Distributed Computing Model 

– Best of Shared Memory Computing Model 

• Exascale Roadmap*:  
– “Hybrid Programming is a practical way to 

 program exascale systems” 

 

 

* The International Exascale Software Roadmap, Dongarra, J., Beckman, P. et al., Volume 25, Number 1, 2011, 
International Journal of High Performance Computer Applications, ISSN 1094-3420 

Kernel 1 
MPI 

Kernel 2 
MPI 

Kernel 3 
MPI 

Kernel N 
MPI 

HPC Application 

Kernel 2 
PGAS 

Kernel N 
PGAS 
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• High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP, and RDMA 
over Converged Enhanced Ethernet (RoCE) 

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002 

– MVAPICH2-X (MPI + PGAS), Available since 2012 

– Support for GPGPUs and MIC 

– Used by more than  2,150 organizations  (HPC Centers, Industry and Universities)  
in 72 countries 

– More than 218,000 downloads from OSU site directly 

– Empowering many TOP500 clusters 
•  7th ranked 519,640-core cluster (Stampede) at  TACC 

• 11th ranked 74,358-core cluster (Tsubame 2.5) at Tokyo Institute of Technology 

• 16th ranked 96,192-core cluster (Pleiades) at NASA and many others 

– Available with software stacks of many IB, HSE, and server vendors including 
Linux Distros (RedHat and SuSE) 

– http://mvapich.cse.ohio-state.edu 

• Partner in the U.S. NSF-TACC Stampede System 

 

MVAPICH2/MVAPICH2-X Software 

9 IXPUG14-OSU-PGAS 
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MVAPICH2-X for Hybrid MPI + PGAS Applications 
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MPI Applications, OpenSHMEM Applications, UPC 
Applications, Hybrid (MPI + PGAS) Applications 

Unified MVAPICH2-X Runtime 

InfiniBand, RoCE, iWARP 

OpenSHMEM Calls MPI Calls UPC Calls 

• Unified communication runtime for MPI, UPC, OpenSHMEM available with 
MVAPICH2-X 1.9 onwards!  
– http://mvapich.cse.ohio-state.edu 

• Feature Highlights 
– Supports MPI(+OpenMP), OpenSHMEM, UPC, MPI(+OpenMP) + OpenSHMEM, 

MPI(+OpenMP) + UPC  
– MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 standard 

compliant (with initial support for UPC 1.3) 
– Scalable Inter-node and intra-node communication – point-to-point and collectives 

http://mvapich.cse.ohio-state.edu/overview/mvapich2x


• OpenSHMEM and UPC  for Host  

• Hybrid MPI + PGAS (OpenSHMEM and UPC) for Host 

• OpenSHMEM for MIC 

• UPC for MIC 

IXPUG14-OSU-PGAS 
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OpenSHMEM Design in MVAPICH2-X 

• OpenSHMEM Stack based on OpenSHMEM Reference Implementation 

• OpenSHMEM Communication over MVAPICH2-X Runtime 
– Uses active messages, atomic  and one-sided operations and remote 

registration cache 

Communication API 
Symmetric Memory 

Management API 

Minimal Set of Internal API 

OpenSHMEM API 

InfiniBand, RoCE, iWARP 

Data  
Movement Collectives Atomics Memory 

Management 

Active 
Messages 

One-sided 
Operations 

MVAPICH2-X Runtime 

 Remote 
Atomic Ops 

Enhanced 
Registration Cache 
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J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance 
Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012. 



OpenSHMEM Collective Communication Performance 
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OpenSHMEM Application Evaluation 
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• Improved performance for OMPI-SHMEM and Scalable-SHMEM with FCA 
• Execution time for 2DHeat Image at 512 processes (sec): 

- UH-SHMEM – 523, OMPI-SHMEM – 214, Scalable-SHMEM – 193, MV2X-
SHMEM – 169 

• Execution time for DAXPY at 512 processes (sec): 
- UH-SHMEM – 57, OMPI-SHMEM – 56, Scalable-SHMEM – 9.2, MV2X-

SHMEM – 5.2 
 J. Jose, J. Zhang, A. Venkatesh, S. Potluri, and D. K. Panda, A Comprehensive Performance Evaluation of OpenSHMEM Libraries 

on InfiniBand Clusters, OpenSHMEM Workshop (OpenSHMEM’14), March 2014  
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MVAPICH2-X Support for Berkeley UPC Runtime  

• GASNet (Global-Address Space Networking) is a language-independent, low-
level networking layer that provides support for PGAS language 

• Support multiple networks through different conduit: MVAPICH2-X Conduit 
is available in MVAPICH2-X release, which support UPC/OpenMP/MPI on 
InfiniBand 

 

 

IXPUG14-OSU-PGAS 15 

UPC Applications 

Compiler-generated Code 

Compiler-specific Runtime 

                    GASNet Core APIs 

Extended APIs 

SMP Conduit MPI Conduit MXM Conduit MVAPICH2-X Conduit … 

High-level operations 
such as remote memory 

access and various 
collective operations 

Heavily based on active 
messages; directly on 
top of each individual 
network architectures 

IB Conduit 
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UPC Collectives Performance 
Broadcast (2048 processes) Scatter (2048 processes) 

Gather (2048 processes) Exchange (2048 processes) 
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J. Jose, K. Hamidouche,  J. Zhang, A. Venkatesh, and D. K. Panda, Optimizing Collective Communication in UPC (HiPS’14, in 
association with IPDPS’14) 



• OpenSHMEM and UPC  for Host  

• Hybrid MPI + PGAS (OpenSHMEM and UPC) for Host 

• OpenSHMEM for MIC 

• UPC for MIC 

IXPUG14-OSU-PGAS 
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Unified Runtime for Hybrid MPI + OpenSHMEM Applications 

IXPUG14-OSU-PGAS 18 

MPI Applications, OpenSHMEM Applications,  
Hybrid (MPI + OpenSHMEM) Applications 

MVAPICH2-X Runtime 

InfiniBand, RoCE, iWARP 

OpenSHMEM Calls MPI Calls 

Hybrid (OpenSHMEM + MPI) Applications 

OpenSHMEM 
Runtime 

MPI Runtime 

InfiniBand, RoCE, iWARP 

OpenSHMEM Calls MPI Calls 

• Optimal network resource usage 
• No deadlock because of single runtime 
• Better performance 

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance 
Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012. 
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Hybrid MPI+OpenSHMEM Graph500 Design  
Execution Time 

 

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming Models, 
International Supercomputing Conference (ISC’13), June 2013 

0
1
2
3
4
5
6
7
8
9

26 27 28 29

Bi
lli

on
s 

of
 T

ra
ve

rs
ed

 E
dg

es
 P

er
 

Se
co

nd
 (T

EP
S)

 

Scale 

MPI-Simple
MPI-CSC
MPI-CSR
Hybrid(MPI+OpenSHMEM)

0
1
2
3
4
5
6
7
8
9

1024 2048 4096 8192

Bi
lli

on
s 

of
 T

ra
ve

rs
ed

 E
dg

es
 P

er
 

Se
co

nd
 (T

EP
S)

 

# of Processes 

MPI-Simple
MPI-CSC
MPI-CSR
Hybrid(MPI+OpenSHMEM)

Strong Scalability 

Weak Scalability 

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and 
Performance Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012 
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• Performance of Hybrid (MPI+OpenSHMEM) 
Graph500 Design 

• 8,192 processes 
 - 2.4X improvement over MPI-CSR 
 - 7.6X improvement over MPI-Simple 
• 16,384 processes 
 - 1.5X improvement over MPI-CSR 
 - 13X improvement over MPI-Simple 
 J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM 

Programming Models, International Supercomputing Conference (ISC’13), June 2013 



Hybrid MPI+UPC NAS-FT 

• Modified NAS FT UPC all-to-all pattern using MPI_Alltoall 
• Truly hybrid program 
• For FT (Class C, 128 processes)  

•  34% improvement over UPC (GASNet) 
•  30% improvement over UPC (MV2-X) 
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J. Jose, M. Luo, S. Sur and D. K. Panda, Unifying UPC and MPI Runtimes: Experience with MVAPICH, Fourth 
Conference on Partitioned Global Address Space Programming Model (PGAS '10), October 2010 

UPC (GASNet) 

UPC (MV2-X) 

MPI+UPC (MV2-X) 

J. Jose, M. Luo, S. Sur and D. K. Panda, Unifying UPC and MPI Runtimes: Experience with MVAPICH, Int'l Conference on 
Partitioned Global Address Space Programming Models (PGAS) 2010 
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• OpenSHMEM and UPC  for Host  

• Hybrid MPI + PGAS (OpenSHMEM and UPC) for Host 

• OpenSHMEM for MIC 

• UPC for MIC 

IXPUG14-OSU-PGAS 
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HPC Applications on MIC Clusters 
• Flexibility in launching HPC jobs on Xeon Phi Clusters 

Xeon Xeon Phi 

Multi-core Centric 

Many-core Centric 

OpenSHMEM 
Program 

OpenSHMEM 
Program 

Offloaded 
Computation 

OpenSHMEM 
Program 

OpenSHMEM 
Program 

OpenSHMEM 
Program 

Host-only 

Offload  
(/reverse Offload) 

Symmetric 

Coprocessor-only 
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Data Movement on Intel Xeon Phi Clusters 

CPU CPU 
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Node 0 Node 1 1. Intra-Socket 
2. Inter-Socket 
3. Inter-Node 
4. Intra-MIC 
5. Intra-Socket MIC-MIC 
6. Inter-Socket MIC-MIC 
7. Inter-Node MIC-MIC 
8. Intra-Socket MIC-Host 

10. Inter-Node MIC-Host 
9. Inter-Socket MIC-Host 

OpenSHMEM Process 

11. Inter-Node MIC-MIC with IB on remote socket 
 

and more . . . 

•   Critical for runtimes to optimize data movement, hiding the complexity 
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Need for Non-Uniform Memory Allocation in 
OpenSHMEM 

• MIC cores have limited  

      memory per core 

• OpenSHMEM relies on  
symmetric memory,  
allocated using shmalloc() 

• shmalloc() allocates same amount of memory on all PEs 

• For applications running in symmetric mode, this limits the total heap 
size 

• Similar issues for applications (even host-only) with memory load 
imbalance (Graph500, Out-of-Core Sort, etc.) 

• How to allocate different amounts of memory on host and MIC cores, 
and still be able to communicate? 

Memory per core 

IXPUG14-OSU-PGAS 24 



OpenSHMEM Design for MIC Clusters 

• Non-Uniform Memory Allocation: 
– Team-based Memory Allocation  

(Proposed Extensions) 

 

 

 

 

 

 

– Address Structure for non-uniform memory allocations  
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  HOST2 

Proxy-based designs for OpenSHMEM 

OpenSHMEM Put using Active Proxy OpenSHMEM Get using Active Proxy 

 HOST1 

MIC1 
H
C
A 

HOST2 

MIC2 
H
C
A 

(1) IB REQ 

(2) SCIF 
Read 

(2) IB  
Write 

(3) IB 
 FIN 

 HOST1 

MIC1 
H
C
A 

MIC2 
H
C
A 

(3) IB 
FIN 

(2) SCIF 
Read 

(2) IB  
Write 

(1) IB  
REQ 

• Current generation architectures impose limitations on read bandwidth when 
HCA reads from MIC memory 

– Impacts both put and get operation performance 
• Solution: Pipelined data transfer by proxy running on host using IB and SCIF 

channels 
• Improves latency and bandwidth! 
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OpenSHMEM Put/Get Performance 

OpenSHMEM Put Latency OpenSHMEM Get Latency 
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• Proxy-based designs alleviate hardware limitations 
• Put Latency of 4M message: Default: 3911us, Optimized: 838us 
• Get Latency of 4M message: Default: 3889us, Optimized: 837us 

 

4.5X 4.6X 
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OpenSHMEM Collectives Performance 
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Broadcast Latency (1,024 processes) Reduce Latency (1,024 processes) 

• Optimized designs for OpenSHMEM collective operations 
• Broadcast Latency of 256KB message at 1,024 processes:  

– Default: 5955us, Optimized: 2268us 

• Reduce Latency of 256KB message at 1,024 processes:  
– Default: 6581us, Optimized: 3294us 

2.6X 1.9X 
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Performance Evaluations using Graph500 

Native Mode (8 procs/MIC) Symmetric Mode (16 Host+16MIC) 

• Graph500 Execution Time (Native Mode):  
– At 512 processes , Default: 5.17s, Optimized: 4.96s 
– Performance Improvement from MIC-aware collectives design 

• Graph500 Execution Time (Symmetric Mode):  
– At 1,024 processes, Default: 15.91s, Optimized: 12.41s 
– Performance Improvement from MIC-aware collectives and proxy-based designs 
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Graph500 Evaluations with Extensions 

• Redesigned Graph500 using MIC to overlap computation/communication 
– Data Transfer to MIC memory; MIC cores pre-processes received data 
– Host processes traverses vertices, and sends out new vertices 

• Graph500 Execution time at 1,024 processes:  
– Host-Only: .33s, Host+MIC with Extensions: .26s 

• Magnitudes of improvement compared to default symmetric mode 
– Default Symmetric Mode: 12.1s, Host+MIC Extensions: 0.16s 
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J. Jose, K. Hamidouche, X. Lu, S. Potluri, J. Zhang, K. Tomko and D. K. Panda, High Performance OpenSHMEM for Intel MIC 
Clusters: Extensions, Runtime Designs and Application Co-Design, IEEE International Conference on Cluster Computing 
(CLUSTER '14) (Best Paper Nominee) 
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• OpenSHMEM and UPC  for Host  

• Hybrid MPI + PGAS (OpenSHMEM and UPC) for Host 

• OpenSHMEM for MIC 

• UPC for MIC 

IXPUG14-OSU-PGAS 

Outline 

31 



HPC Applications on MIC Clusters 
• Flexibility in launching HPC jobs on Xeon Phi Clusters 

Xeon Xeon Phi 

Multi-core Centric 

Many-core Centric 

UPC Program 

UPC Program Offloaded 
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UPC Program UPC Program 

UPC Program 

Host-only 
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UPC on MIC clusters 

33 

• Process Model 
– Communication via shared memory – single copy/double copy 

– One connection per process 

– Drawbacks: Communication Overheads, Network Connections  

• Thread Model 
– Direct access to shared array: same memory space 

– No extra copy 

– No shared memory mapping entries 

– Drawback: sharing of network connections 

– Our work on multi-endpoint addresses this issue 

 

 

IXPUG14-OSU-PGAS 

M. Luo, J. Jose, S. Sur and D. K. Panda, Multi-threaded UPC Runtime with Network Endpoints: Design Alternatives and 
Evaluation on Multi-core Architectures, Int'l Conference on High Performance Computing (HiPC '11), Dec. 2011 



UPC Runtime on MIC: 
Remote Memory Access between Host and MIC 

34 

Leader-to-all connection mode 
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that has affinity with this UPC thread; Establish all-to-all connections between 
every pair of UPC threads between MIC and host 

• Leader-to-all connection mode: Only one UPC thread pinned down the whole 
global memory space on MIC; all UPC threads on the host will get access with the 
leader UPC thread 

• Connections: NMIC*NHOST  -> NMIC+NHOST 
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UPC Runtime on MIC: 
Remote Memory Access between Host and MIC 

35 

• Process-based Runtime: The whole global memory region need to 
be mapped as shared memory region, such as PSHM 

• Thread-based Runtime: As the threads share the same memory 
space, the leader can access other global memory region on MIC 
without mapping to shared memory 
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Application Benchmark Evaluation for Native Mode 

36 
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• Host and MIC are occupied with 16 and 60 UPC threads, respectively 
• MIC performs 80%, 67%, and 54% as 16-CPU host for MG, EP, and FT, respectively 
• For communication-intensive benchmarks CG and IS, MIC spends 7x and 3x execution 

times 
• Default applications without modification – no representation of optimal 

performance 
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Concluding Remarks 

• HPC Systems are evolving to support growing needs of exascale 
applications 

• Hybrid programming (MPI + PGAS) is a practical way to program 
exascale systems 

• Presented designs to demonstrate performance potential of PGAS 
and hybrid MPI+PGAS models 

• MIC support for OpenSHMEM and UPC will be available in future 
MVAPICH2-X releases 
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Web Pointers 

http://www.cse.ohio-state.edu/~panda 
http://www.cse.ohio-state.edu/~hamidouc 

http://nowlab.cse.ohio-state.edu 
 

MVAPICH Web Page 
http://mvapich.cse.ohio-state.edu 

panda@cse.ohio-state.edu 
hamidouc@cse.ohio-state.edu  
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