
IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
1

HPC Programming for the Future

CJ Newburn

HPC Architect, Intel

IXPUG’14 July 8-9 Austin

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
2

Caveats

 This is a forward-looking, what-if presentation

 Should not be taken as conveying our product plans

 I’m wearing my broader-community hat,
not my speaking-for-Intel hat

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
3

Outline

 Some challenges

 Language interfaces

 OpenMP

 Data layout

 Library directions

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
5

Building a community

Share problems Explore, vet, Converge on standards

implement

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
6

Some challenges

 Exposing parallelism

 Language interfaces

 Future proofing

 Controlling how parallelism is harvested

 Concurrency

 Distribution

 Data layout

 See padalworkshop.org for forthcoming report out
to broader HPC community

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
7

Layering

 Semantic layer

 Describe the “what”

 Expressiveness, intuitiveness, productivity

 Minimalist

 Performance control layer

 Describe the “how”

 Control, efficiency

 More pervasive

 Achieve re-targetability through encapsulation

 Separation of concerns

 Domain expert ≠ tuning expert

 Different objectives, different rates of change, different lifetimes

Functional

Semantics

Performant

Implementation

Logical

Physical

M
a
p

p
in

g

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
8

Language interfaces

 Semantic layer

 Less content, but it’s more stable

 More standard, but standards change more slowly

 Influence languages, like C++

 Use directives that are backed by compiler support and runtime
libraries, like OpenMP

 Use functional libraries, like MKL, NumPy

 Performance control layer

 More things to control  more content

 More innovation  harder to standardize

 Influence and develop libraries, which can change faster than
compilers, like OpenMP, Kokkos

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
9

OpenMP

 Strengths

 Standard, widespread, natural

 Spans semantic and control layers

 Weaknesses

 Composability issues

 Has some holes in its completeness

 Transitions (see below for “”)

 Improved compiler support for outer-loop parallelization

 Offload is synchronous only  async

 Data must be structured  decoupled from control structures

 Constrained by C++ rules to not pass structs as parameters 

 Each nesting layer thinks it owns the whole machine 

 [Usage] Each library call manages OpenMP independently 

 Weaknesses are redeemable

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
10

Semantic layer: expose

 Map serial specification of work onto parallel data
collections

 What to do should be separable from the order in which it’s done

 Ex: OpenMP simd functions, lambda functions, Kokkos

 Enrich this appropriately, e.g. with reductions, compress/expand

 Specify data reference patterns

 Pass domain-expert knowledge to underlying system

 Mix of reads and writes: read-only, write-once, mixed

 Spatial locality: streaming, strided?, random

 Temporal locality: use once, reused, persisted

 Other: high bandwidth, working set size, etc.

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
11

Performance control layer: harvest

 Support for parallelism

 SIMD/vector

 Threads in a core

 Cores in a node

 Nodes in a cluster

 Temporal

 Dimension order

 Blocking

 Work stealing

 Binding and data layout

 AoS, SoA, AoSoA, …

 On package or not

 Shared or distributed

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
12

Data layout challenges

 Use of structs

 C++ template-based abstractions like Arrow Street, SIMD Building
Blocks, maybe supported by extensions for reflection/introspection

 Best traversal of multi-dimensional arrays

 Inner vs. outer loop level – directing parallelization

 Blocking – directing traversal via insertion of nests

 Spanning multiple access patterns – selective data re-layout

 Abstract functions + target-tuned traversal libraries

 Discerning access patterns

 Assumed-shape and pointer arrays: stride 1 or not?

 Temporary arrays

 MACVEC tool at TACC – LCPC submission with Jim Browne et al

 Forthcoming Advisor/Vector Tool from Intel moving in this direction

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
13

Library directions for expansion

 Distributed

 Homogeneous cluster

 Heterogeneous cluster

 libhta

 Grey-box vs. black-box libraries

 Inlinable specialization with static guidance by users

 Multi-phase

 Persist distributed data

 Decouple naming of parameters from their availability

 OpenFOAM collaboration with Doug James

 Parallel regions defined outside of library calls vs. within them

 Specialized

 Branching in inlinable header files – error checking, special casing

 Special sizes and shapes, with adequate motivation

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
14

“Grey-box libraries”

 Current way

 In contrast

Initialize: distribute, (re-)format (SpMV)
Execute: sequence or iterate

Mix of stable variables and updates
Inputs and outputs may be distributed
Overlap computes and communication
Each partition works on its own portion

All inputs are in one place
Call library, which returns all outputs
Rinse, repeat

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
15

Remember…

 This is a what-if presentation, not a roadmap

 Comments on other discussions

 15.0 compiler has much better support for vectorization, including
better support for outer loops, way better reporting

 In 15.0, MKL headers that do error checking, specialization, and
native compilation fallback in C

 MPSS 3.3 enhanced to support MIC-MIC proxy transfers within a
node, which significantly boosts bandwidth for multiple cards

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
16

Backup

 Structs as parameters

 See my talk at padalworkshop.org

 OpenMP in a hierarchy

 Temporary array example

 Omitted pending permission

 Challenges of abstraction

 Mapping scalar work to collections and targets

 How to specify properties

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
17

The nested OpenMP problem

4-wide

Whole machine

Nested

Oversubscribed

 Nested but context oblivious

 Each layer thinks it owns the world (e.g. 4 wide)

main() {

omp parallel

function()

…

}

function() {

omp parallel for

…

}

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
18

Avoid OpenMP nesting with a hierarchy

 OpenMP isn’t what does the nesting

 Hierarchy established outside of OpenMP context

main() {

establish_partitions(P)

distribute_work(P)

sync()

}

do_work(P) {

omp parallel for

work(P)

}

work(P) {

i = omp_thread_num()

// do ith part of P

PADAL Workshop, Lugano Switzerland, April 28-29 2014Chris J. Newburn, HPC Architect, Intel
20

Challenges of Abstraction

Functional

Semantics

Performant

Implementation

Logical

Physical
F

u
n

c
ti

o
n

a
l

O
ri

e
n

ta
ti

o
n

Convenience

without

enslavement

Expose

opportunity

1. Defining and

discovering mapping

2. Circumventing limitations

posed by each domain

3. Choosing between

functional and object

orientation

O
b

je
c
t

O
ri

e
n

ta
ti

o
n

Key challenges:

Harvest

opportunity

efficiently

Selectively

exert control

PADAL Workshop, Lugano Switzerland, April 28-29 2014Chris J. Newburn, HPC Architect, Intel
21

“Scalar” work  {collections, targets}

S
c
a

la
r

w
o

rk

 Separation of concerns

 Mapping problem

 Want flexibility through abstraction, + control

D
a

ta

c
o

ll
e

c
-

ti
o

n
s

D
a

ta

la
y
o

u
t

S
u

p
p

o
rt

fo
r

p
a

ra
ll

e
li

s
m

B
in

d
in

g

T
e

m
-

p
o

ra
l

Ref
patterns

struct.x = f(…)
struct.y = g(…)

struct.z = h(…)

Multi-dim arrays
Irregular
Hierarchical …

Working set size
Access pattern

Array of structs (AoS)
Struct of arrays (SoA)
AoSoA …

SIMD/vector
Threads in a core
Cores in a node
Nodes in a cluster
…

Dimension order
Blocking
Work stealing …

On pkg or not
Shared or distributed

PADAL Workshop, Lugano Switzerland, April 28-29 2014Chris J. Newburn, HPC Architect, Intel
22

How to specify properties

Property Data
type

Function
modifier

Pragma
on
construct

Comments

S
e
m

a
n
ti
c

p
ro

p
e
rt

y Scalar work - - - Algorithmic freedom

Data collection √ Kind vs. organization

Reference patterns √ √ √
Size and logical
patterns

C
o
n
-

v
e
n
-

ie
n
ce

Logical data layout √
Merge with data
collection?

P
e
rf

o
rm

a
n
ce

 p
ro

p
e
rt

y

Physical data layout ? √ √
What’s proximate in
physical arrangement

Temporal ? √
Work order affects
access patterns

Supported parallelism √ √ ?
Want data to match
compute

Binding √ √ Binding to places

