(lntel) Look Inside”

HPC Programming for the Future

Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC

Caveats

- This is a forward-looking, what-if presentation
- Should not be taken as conveying our product plans

- I'm wearing my broader-community hat,
not my speaking-for-Intel hat

Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC

Outline

- Some challenges

- Language interfaces
- OpenMP

- Data layout

- Library directions

Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC

Building a community

-

i

V

Share problems Explore, vet, Converge on standards
Implement

Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC

Some challenges

- Exposing parallelism
» Language interfaces
» Future proofing

- Controlling how parallelism is harvested
» Concurrency
> Distribution
» Data layout

- See padalworkshop.org for forthcoming report out
to broader HPC community

Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC

Layering

- Semantic layer
» Describe the “what”
» Expressiveness, intuitiveness, productivity

R Logical
> Minimalist
- Performance control layer 2
~ Describe the “how” §
=

» Control, efficiency
> More pervasive : 7

> Achieve re-targetability through encapsulation Performant
Implementation

- Separation of concerns { Physical }

> Domain expert # tuning expert
» Different objectives, different rates of change, different lifetimes

Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC

Language interfaces

- Semantic layer

» Less content, but it's more stable

» More standard, but standards change more slowly
> Influence languages, like C++
>

Use directives that are backed by compiler support and runtime
libraries, like OpenMP

> Use functional libraries, like MKL, NumPy

- Performance control layer
> More things to control = more content
» More innovation - harder to standardize

» Influence and develop libraries, which can change faster than
compilers, like OpenMP, Kokkos

Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC

OpenMP

- Strengths
» Standard, widespread, natural
> Spans semantic and control layers

- Weaknesses are redeemable
> Composability issues
> Has some holes in its completeness

- Transitions (see below for "->")

Improved compiler support for outer-loop parallelization
Offload is synchronous only = async

Data must be structured - decoupled from control structures
Constrained by C++ rules to not pass structs as parameters >
Each nesting layer thinks it owns the whole machine -
[Usage] Each library call manages OpenMP independently -

>
>
>
>
>
>

intel | 9
Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC L’

Semantic layer: expose

- Map serial specification of work onto parallel data
collections
> What to do should be separable from the order in which it's done
> Ex: OpenMP simd functions, lambda functions, Kokkos
» Enrich this appropriately, e.g. with reductions, compress/expand

- Specify data reference patterns
» Pass domain-expert knowledge to underlying system
> Mix of reads and writes: read-only, write-once, mixed
» Spatial locality: streaming, strided?, random
> Temporal locality: use once, reused, persisted
» Other: high bandwidth, working set size, etc.

@ |10

Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC

Performance control layer: harvest

- Support for parallelism
> SIMD/vector
> Threads in a core
» Cores in a node
> Nodes in a cluster

- Temporal
> Dimension order
> Blocking
> Work stealing

- Binding and data layout
> A0S, SOA, A0SOA, ...
> On package or not
> Shared or distributed

Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC

Data layout challenges

- Use of structs

> C++ template-based abstractions like Arrow Street, SIMD Building

Blocks, maybe supported by extensions for reflection/introspection

- Best traversal of multi-dimensional arrays

> Inner vs. outer loop level — directing parallelization

> Blocking — directing traversal via insertion of nests

> Spanning multiple access patterns — selective data re-layout

> Abstract functions + target-tuned traversal libraries

- Discerning access patterns
> Assumed-shape and pointer arrays: stride 1 or not?
> Temporary arrays
> MACVEC tool at TACC — LCPC submission with Jim Browne et a/
» Forthcoming Advisor/Vector Tool from Intel moving in this direction

@ |12

Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC

Library directions for expansion

- Distributed

> Homogeneous cluster
» Heterogeneous cluster
> libhta

- Grey-box vs. black-box libraries

Inlinable specialization with static guidance by users

Multi-phase

Persist distributed data

Decouple naming of parameters from their availability

OpenFOAM collaboration with Doug James

Parallel regions defined outside of library calls vs. within them

- Specialized
» Branching in inlinable header files — error checking, special casing
» Special sizes and shapes, with adequate motivation

YV V VYV V VY VY

@ |13

Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC

“Grey-box libraries”

- Current way

All inputs are in one place
Call library. which returns all outputs
Rinse, repeat

- In contrast

Initialize: distribute, (re-)format (SpMV)
Execute: sequence or iterate

Mix of stable variables and updates
é# Inputs and outputs may be distributed
i Overlap computes and communication

Each partition works on its own portion

Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC

Remember...

- This is a what-if presentation, not a roadmap

- Comments on other discussions

> 15.0 compiler has much better support for vectorization, including
better support for outer loops, way better reporting

> In 15.0, MKL headers that do error checking, specialization, and
native compilation fallback in C

> MPSS 3.3 enhanced to support MIC-MIC proxy transfers within a
node, which significantly boosts bandwidth for multiple cards

@ |15

Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC

Backup

- Structs as parameters
» See my talk at padalworkshop.org

- OpenMP in a hierarchy

- Temporary array example
> Omitted pending permission

- Challenges of abstraction
- Mapping scalar work to collections and targets
- How to specify properties

@ |16

Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC

The nested OpenMP problem

Nested (]

Oversubscribed (3
ah G &

main() {
omp parallel

4-wide functlon()
Whole machine
function() {
a B B
a B &

omp parallel for

|

Nested but context oblivious

Each layer thinks it owns the world (e.g. 4 wide)

Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC

Avoid OpenMP nesting with a hierarchy

main() {
establish_partitions(P)
L J distribute_work(P)
sync()
}

do_work(P) {
omp parallel for
work(P)

}

work(P) {
| =omp_thread _num()
// do it" part of P

OpenMP isn't what does the nesting
Hierarchy established outside of OpenMP context

@ |10

Chris J. Newburn, HPC Architect, Intel IXPUG’14 July 8-9 at TACC

Challenges of Abstraction S J

opportunity

_)
Convenience

without
enslavement

Key challenges:

g
1. Defining and Logical /
_ discovering mapping c 3 <[Selectively }
- .= | G —
(2. Circumventing limitations| © 8 e exert control
_posed by each domain o) é § é
- @ L O
3. Choosing between ? i Harvest
functional and object opportunity
orientation Performant efficiently

_

Implementation

{ Physical }

Chris J. Newburn, HPC Architect, Intel PADAL Workshop, Lugano Switzerland, April 28-29 2014

@ |20

“Scalar” work = {collections, targets}
o L™ struct.x = f(...)
7“3 o struct.y = g(...)
@ 3 struct.z = h(...)

SIMD/vector
Threads in a core
Cores in a node
Nodes in a cluster

| -

8§
t=
g_é’
5 o

| Dimension order
qE, Blocking
[t

Working set size
Ref 9 Work stealing ...

patterns Access pattern

Array of structs (AoS)

Struct of arrays (SoA) On pkg or not
AOSOA ... Shared or distributed

Separation of concerns
Mapping problem
- Want flexibility through abstraction, + control =y

Chris J. Newburn, HPC Architect, Intel PADAL Workshop, Lugano Switzerland, April 28-29 2014

How to specify properties

Property Data | Function | Pragma
type | modifier | on
construct
o > Scalar work = - = Algorithmic freedom
5 © Data collection v Kind vs. organization
E O : :
Q 5 Size and logical
» Reference patterns v v Vv SERETE
L Y : Merge with data
C 9
Stsg Logical data layout % collection?
£ What’s proximate in
= i ?
§ Physical data layout : v Vv BT e ——
3. Temporal 5 V. Work order affects
O access patterns
O
= : . Want data to match
5 Supported parallelism v % : compute
L Binding V v Binding to places

@ |22

Chris J. Newburn, HPC Architect, Intel PADAL Workshop, Lugano Switzerland, April 28-29 2014

