
IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
1

HPC Programming for the Future

CJ Newburn

HPC Architect, Intel

IXPUG’14 July 8-9 Austin

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
2

Caveats

 This is a forward-looking, what-if presentation

 Should not be taken as conveying our product plans

 I’m wearing my broader-community hat,
not my speaking-for-Intel hat

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
3

Outline

 Some challenges

 Language interfaces

 OpenMP

 Data layout

 Library directions

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
5

Building a community

Share problems Explore, vet, Converge on standards

implement

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
6

Some challenges

 Exposing parallelism

 Language interfaces

 Future proofing

 Controlling how parallelism is harvested

 Concurrency

 Distribution

 Data layout

 See padalworkshop.org for forthcoming report out
to broader HPC community

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
7

Layering

 Semantic layer

 Describe the “what”

 Expressiveness, intuitiveness, productivity

 Minimalist

 Performance control layer

 Describe the “how”

 Control, efficiency

 More pervasive

 Achieve re-targetability through encapsulation

 Separation of concerns

 Domain expert ≠ tuning expert

 Different objectives, different rates of change, different lifetimes

Functional

Semantics

Performant

Implementation

Logical

Physical

M
a
p

p
in

g

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
8

Language interfaces

 Semantic layer

 Less content, but it’s more stable

 More standard, but standards change more slowly

 Influence languages, like C++

 Use directives that are backed by compiler support and runtime
libraries, like OpenMP

 Use functional libraries, like MKL, NumPy

 Performance control layer

 More things to control more content

 More innovation harder to standardize

 Influence and develop libraries, which can change faster than
compilers, like OpenMP, Kokkos

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
9

OpenMP

 Strengths

 Standard, widespread, natural

 Spans semantic and control layers

 Weaknesses

 Composability issues

 Has some holes in its completeness

 Transitions (see below for “”)

 Improved compiler support for outer-loop parallelization

 Offload is synchronous only async

 Data must be structured decoupled from control structures

 Constrained by C++ rules to not pass structs as parameters

 Each nesting layer thinks it owns the whole machine

 [Usage] Each library call manages OpenMP independently

 Weaknesses are redeemable

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
10

Semantic layer: expose

 Map serial specification of work onto parallel data
collections

 What to do should be separable from the order in which it’s done

 Ex: OpenMP simd functions, lambda functions, Kokkos

 Enrich this appropriately, e.g. with reductions, compress/expand

 Specify data reference patterns

 Pass domain-expert knowledge to underlying system

 Mix of reads and writes: read-only, write-once, mixed

 Spatial locality: streaming, strided?, random

 Temporal locality: use once, reused, persisted

 Other: high bandwidth, working set size, etc.

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
11

Performance control layer: harvest

 Support for parallelism

 SIMD/vector

 Threads in a core

 Cores in a node

 Nodes in a cluster

 Temporal

 Dimension order

 Blocking

 Work stealing

 Binding and data layout

 AoS, SoA, AoSoA, …

 On package or not

 Shared or distributed

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
12

Data layout challenges

 Use of structs

 C++ template-based abstractions like Arrow Street, SIMD Building
Blocks, maybe supported by extensions for reflection/introspection

 Best traversal of multi-dimensional arrays

 Inner vs. outer loop level – directing parallelization

 Blocking – directing traversal via insertion of nests

 Spanning multiple access patterns – selective data re-layout

 Abstract functions + target-tuned traversal libraries

 Discerning access patterns

 Assumed-shape and pointer arrays: stride 1 or not?

 Temporary arrays

 MACVEC tool at TACC – LCPC submission with Jim Browne et al

 Forthcoming Advisor/Vector Tool from Intel moving in this direction

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
13

Library directions for expansion

 Distributed

 Homogeneous cluster

 Heterogeneous cluster

 libhta

 Grey-box vs. black-box libraries

 Inlinable specialization with static guidance by users

 Multi-phase

 Persist distributed data

 Decouple naming of parameters from their availability

 OpenFOAM collaboration with Doug James

 Parallel regions defined outside of library calls vs. within them

 Specialized

 Branching in inlinable header files – error checking, special casing

 Special sizes and shapes, with adequate motivation

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
14

“Grey-box libraries”

 Current way

 In contrast

Initialize: distribute, (re-)format (SpMV)
Execute: sequence or iterate

Mix of stable variables and updates
Inputs and outputs may be distributed
Overlap computes and communication
Each partition works on its own portion

All inputs are in one place
Call library, which returns all outputs
Rinse, repeat

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
15

Remember…

 This is a what-if presentation, not a roadmap

 Comments on other discussions

 15.0 compiler has much better support for vectorization, including
better support for outer loops, way better reporting

 In 15.0, MKL headers that do error checking, specialization, and
native compilation fallback in C

 MPSS 3.3 enhanced to support MIC-MIC proxy transfers within a
node, which significantly boosts bandwidth for multiple cards

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
16

Backup

 Structs as parameters

 See my talk at padalworkshop.org

 OpenMP in a hierarchy

 Temporary array example

 Omitted pending permission

 Challenges of abstraction

 Mapping scalar work to collections and targets

 How to specify properties

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
17

The nested OpenMP problem

4-wide

Whole machine

Nested

Oversubscribed

 Nested but context oblivious

 Each layer thinks it owns the world (e.g. 4 wide)

main() {

omp parallel

function()

…

}

function() {

omp parallel for

…

}

IXPUG’14 July 8-9 at TACCChris J. Newburn, HPC Architect, Intel
18

Avoid OpenMP nesting with a hierarchy

 OpenMP isn’t what does the nesting

 Hierarchy established outside of OpenMP context

main() {

establish_partitions(P)

distribute_work(P)

sync()

}

do_work(P) {

omp parallel for

work(P)

}

work(P) {

i = omp_thread_num()

// do ith part of P

PADAL Workshop, Lugano Switzerland, April 28-29 2014Chris J. Newburn, HPC Architect, Intel
20

Challenges of Abstraction

Functional

Semantics

Performant

Implementation

Logical

Physical
F

u
n

c
ti

o
n

a
l

O
ri

e
n

ta
ti

o
n

Convenience

without

enslavement

Expose

opportunity

1. Defining and

discovering mapping

2. Circumventing limitations

posed by each domain

3. Choosing between

functional and object

orientation

O
b

je
c
t

O
ri

e
n

ta
ti

o
n

Key challenges:

Harvest

opportunity

efficiently

Selectively

exert control

PADAL Workshop, Lugano Switzerland, April 28-29 2014Chris J. Newburn, HPC Architect, Intel
21

“Scalar” work {collections, targets}

S
c
a

la
r

w
o

rk

 Separation of concerns

 Mapping problem

 Want flexibility through abstraction, + control

D
a

ta

c
o

ll
e

c
-

ti
o

n
s

D
a

ta

la
y
o

u
t

S
u

p
p

o
rt

fo
r

p
a

ra
ll

e
li

s
m

B
in

d
in

g

T
e

m
-

p
o

ra
l

Ref
patterns

struct.x = f(…)
struct.y = g(…)

struct.z = h(…)

Multi-dim arrays
Irregular
Hierarchical …

Working set size
Access pattern

Array of structs (AoS)
Struct of arrays (SoA)
AoSoA …

SIMD/vector
Threads in a core
Cores in a node
Nodes in a cluster
…

Dimension order
Blocking
Work stealing …

On pkg or not
Shared or distributed

PADAL Workshop, Lugano Switzerland, April 28-29 2014Chris J. Newburn, HPC Architect, Intel
22

How to specify properties

Property Data
type

Function
modifier

Pragma
on
construct

Comments

S
e
m

a
n
ti
c

p
ro

p
e
rt

y Scalar work - - - Algorithmic freedom

Data collection √ Kind vs. organization

Reference patterns √ √ √
Size and logical
patterns

C
o
n
-

v
e
n
-

ie
n
ce

Logical data layout √
Merge with data
collection?

P
e
rf

o
rm

a
n
ce

 p
ro

p
e
rt

y

Physical data layout ? √ √
What’s proximate in
physical arrangement

Temporal ? √
Work order affects
access patterns

Supported parallelism √ √ ?
Want data to match
compute

Binding √ √ Binding to places

