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This effort only works with a collaborative effort

❖ Intel’s Early Access Program got us up and going quickly.!

❖ Weekly teleconferences have led to both compiler 
improvements, code and even OS improvements.!

❖ Access to Stampede positioned CESM to run on the Xeon 
Phi in production mode.!

❖ Kudos for Stampede infrastructure.!

❖ We’ve adopted something similar to ibrun.symm and 
the file mounting paradigm on NCAR’s KNC cluster
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We need better science throughput for climate codes. 

❖ Climate simulations simulate 100s to 1000s of years of activity.!

❖ Currently high resolution climate simulations rate is 2 ~ 3 
simulated year per day (SYPD) [~40k pes].  !

❖ NCAR climate code primarily uses explicit time stepping which 
means speed up primarily comes from faster calculations.!

❖ We want to use the full range of HPC micro-architectures which 
adds to the challenge.!

❖ We must use these architectures efficiently for successful SYPD 
speed up, which requires knowing the hardware!
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Community Earth Systems Model (CESM)
•Coupled framework for components 
consisting of different models.!
•>1.5M lines of  fortran code!
•Many collaborators with acute accuracy 
requirements.!
•Few standalone drivers!

•Kernel extractor (KGEN) is 
addressing this.  !

• HOMME (dynamical core) + atmosphere 
physics and chemistry + active land (CLM) 
= FC5 ~ CAM-SE!
•FIDEAL is only dynamical core with all 
fluxes from data files [HOMME + coupler].!
•Scientist want a “push-button” code.!

•Tuning application must eventually 
be hidden in application configure 
scripts.  This is very very hard.

HOMME
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Porting to Xeon Phi easy to start and difficult to finish.

❖ Programs can run completely on the Xeon Phi (native mode).  !

❖ Compiling with “-mmic” is supposed to do the trick.!

❖ Somebody needs to come along and build supporting libraries for the 
Xeon Phi (netcdf, hdf5, …, ?Trilinos?)!

❖ We can run CESM on both the host (Xeon) and coprocessor (Xeon Phi) at 
same time (symmetric mode) via MPI ranks mapping to specific devices.  We 
are focusing on native execution to highlight computational inefficiencies.!

❖ Working on a configure (processor layout) file generator for mapping 
ranks so PIO is on host and rest on Xeon Phis.!

❖ Primarily sequential code should be on the higher frequency chips but 
this is only a few of the components.
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FIDEAL for CESM passes correctness on Stampede’s Xeon Phi

❖ FCIDEAL motivated by 
efforts collaborative efforts 
with INTEL w.r.t HOMME!

❖ 25% as fast as Dual Socket 
Xeon!

❖ 1 yr simulation results 
ensemble verified… so 
move on to more 
complicated CESM 
system.

Device! Resolution!
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FC5 CESM is relatively “flat” when looking for  expensive 
subroutines.

❖ Huge subroutines that are time consuming may require 
refactoring to discover enhancement possibilities.
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We want to use vector instructions efficiently.
❖ Better vectorization on Xeon 

will only help with Xeon Phi.!

❖ Contiguous memory access in 
loops will help.!

❖ A $dir vector aligned to 
inner loop allows for single 
stride access shows 1% 
relative VI increase 
(divergence_sphere_wk). Not 
enough to impact overall 
performance at this small 
scale.!

❖ An inner loop of 8 iterates 
works well with the Xeon Phi 
VPU.

Fig.1: TAU profile, total exclusive execution time on Xeon.

Fig 2.: Vector Intensity with max value of 1 on Xeon
❖ a=2*(FP_COMP_OPS_EXE:SSE_FP_PACKED_DOUBLE) + 4*(SIMD_FP_256:PACKED_DOUBLE), b=FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE !

❖ PAPI_VEC_DP/PAPI_DP_OPS= 1/(1+(b/a))
-
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Cycles Per Instruction can highlight issues.

❖ First derivative minimums correspond to subroutines 
which are evaluated for acceleration. [BSC: Extrae,Paraver]
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Scalars as vectors and reducing loops help.  Cutting down 
number of divides also helps.

        real(r8) srcs2(pcols)         ! work variable!
        real(r8) tc(pcols)            ! temp in celcius!
        real(r8) weight(pcols)        ! fraction of condensate which is ice!
        real(r8) cldmabs(pcols)       ! maximum cloud at or above this level!
        real(r8) cldmabc(pcols)       ! maximum cloud at or above this level!
        real(r8) odds(pcols)          ! limit on removal rate (proportional to prec)!
!
!
!
    do k = 1,pver!
           do i = 1,ncol!
              tc(i)     = t(i,k) - tmelt!
              weight(i) = max(0._r8,min(-tc(i)*0.05_r8,1.0_r8)) ! fraction of condensate that is ice!
              weight(i) = 0._r8                                 ! assume no ice!
!
              pdog(i)  = pdel(i,k)/gravit!
              rpdog(i) = gravit/pdel(i,k)!
              rdeltat  = 1.0_r8/deltat!
!
              ! ****************** Evaporation **************************!
              ! calculate the fraction of strat precip from above!
              !                 which evaporates within this layer!
  #ifdef SVRECIP!
              fracev(i) = evaps(i,k)*pdog(i) &!
  #else!
              fracev(i) = evaps(i,k)*pdel(i,k)/gravit &!
  #endif!
                       /max(1.e-12_r8,precabs(i))!

        real(r8) srcs2       ! work variable!
        real(r8) tc            ! temp in celcius!
        real(r8) weight      ! fraction of condensate which is ice!
        real(r8) cldmabs      ! maximum cloud at or above this level!
        real(r8) cldmabc      ! maximum cloud at or above this level!
        real(r8) odds         ! limit on removal rate (proportional to prec)!
!
!
!
      do k = 1,pver!
         do i = 1,ncol!
            tc     = t(i,k) - tmelt!
            weight = max(0._r8,min(-tc*0.05_r8,1.0_r8)) ! fraction of condensate that is ice!
            weight = 0._r8                                 ! assume no ice!
!
            pdog = pdel(i,k)/gravit!
!
!
!
!
           ! ****************** Evaporation **************************!
            ! calculate the fraction of strat precip from above!
            !                 which evaporates within this layer!
            fracev(i) = evaps(i,k)*pdel(i,k)/gravit &!
                     /max(1.e-12_r8,precabs(i))!
!
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VPU vector length speedup nearly achieved. 

! !
❖ Overall application speedup is relatively small;  we need many of these micro-

accelerations.  !
❖ This type of acceleration’s overall impact is possibly diminished with increased 

resolution.!
❖ All regression tests passed for the Xeon Phi.
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Investigations with HOMME and help from TACC + Intel showed  
“-mP2OPT_hpo_matrix_opt_framework=0” needed for -O3 on Xeon Phi

❖ Comparative slowest may not be most expensive.
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Components behave nearly the same on both platforms

❖ Still need to understand why coupler is much slower on Xeon Phi with no restart files.
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FC5 (CAM-SE) is .3*Xeon [2 dual  socket]= Xeon Phi [2 KNC] and is 
now verified using ensembles. Is the bit-for-bit constraint alleviated?
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❖ Create ensemble of all variables (118) on 
trusted platform by 101 initial temperature 
perturbations.!

❖ 1 year simulation !

❖ Particular compset and resolution!

❖ 101 member ensemble establishes 
[min,max] RMSZ score or global mean 
interval per variable: baseline intervals!

❖ Compare 3 similar perturbations on ported 
platform or new algorithm.!

❖ Success: Less than 10% variables outside of 
baseline intervals with no repetition among 
the 3 experiments.
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We are continually working toward Xeon Phi CESM production 
runs.

❖ DDT use on Xeon Phi helped expose Intel’s OpenMP issue of privatized variables that have allocatable 
members.!

❖ We want to use KGEN (Y. Kim) to extract more kernels for acceleration on both Xeon and Xeon Phi!

❖ We are working on the fully coupled BC5 Xeon Phi verification. !

❖ Newest Intel 15 compiler that has fixes applied (compiler flag that optimized FC5) does not run on 
the Xeon Phi as of yet (but it does for Xeon). !

❖ Ensemble verification process allows for comparisons without bit-for-bit constraint.!

❖ We now have a branch of CESM dedicated to Xeon Phi development.!

❖ Symmetric run strategies will be explored in this branch.  This will be necessary production run 
status.!

❖ We must be careful that code changes does not hurt performance on other architectures.!

❖ Regression tests have minimal performance checks (high-level subroutine max times).  We would 
like to integrate more detailed (and still light weight) performance checks in the regression testing.
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