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SUMMARY 

 Uncertainty Quantification & Seismic Imaging 

  1 - Seismic imaging in Exploration & Production Process (E&P). 

  2 - Uncertainties in seismic imaging. 

  3 - Example. 

 Scientific Workflow  

    - Debugging, Profiling  & Tuning Scientific Workflows using Chiron 

    - Performance analysis 

   

 Kernel Computational optimizations applied on RTM ( Reverse Time Migration) algorithm. 
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 Exploration & Production (E&P) decision process 

Area of Interest 

Computationally intensive.  Requires thousands of shots and a post-processing step to obtain an image 

The migration uses the output of ill-posed problem: the tomography, it is an admissible velocity field of the subsurface 

 There exists uncertainties : 
- Low fidelity physical models for the wave propagation 
- Noisy measured data 
- etc 

 

Can lead to drastically wrong results / decisions 



SC15 MIC Tuning BoF 

8 

 We want to define a framework for the propagation of velocity field uncertainties in RTM. The framework needs 

to be: 

 Probabilistic: the output of tomography is stochastic, the formulation needs to be probabilistic. 

 Non-intrusive: we have a well optimized RTM code. 

 

 

 

 

 

 

 

 

 

 Effective: we want to run the less possible number of RTM. 

 

 Choice of stochastic collocation (interpolation approach).  

Input: 
y 

 velocity 
field 

Output: 
u(y) 

Positions of 
reflectors 

Input: 
probability 
distribution 

Output: 
probability 
distribution 

RTM 

RTM 

Vs. 

Non Intrusive method: 
The RTM solver is OPTIMIZED 

Uncertainty Quantification technique 
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Probabilistic Framework 
Uncertainty  

Quantification on 

images 

Deterministic calculation: 

Optimized RTM Code 

Uncertainty Quantification in seismic imaging 
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 Requires M RTMs. 

 If we consider the number of points needed around 1,000 

the computational cost will be 1,000 * 3 min1 ≈ 50h for one shot RTM but 5000h for multiple shots RTM (100 shots). 

 Requires a lot of computational power. 

 Scientific Workflow Management System needed to support the intensive computations:  

 

                         CHIRON: : a parallel workflow execution engine  

Dias, Jonas, et al. "Data-centric iteration in dynamic workflows." Future Generation Computer Systems (2014) 

OGASAWARA, E., DIAS, J., SILVA, V., et al.,2013,"Chiron: A Parallel Engine for Algebraic Scientific Workflows”,Concurrency and Computation, v.25, n.16, pp.2327–2341. 

Uncertainty Quantification in seismic imaging needs  Scientific Workflow  

Dataflow oriented by a workflow  

relational algebra 

Applications 

•  Computational Fluid Dynamics  

•  Risers, 

•  UQ 

•  RTM 

Strong Provenance Support 

•  Debugging scientific workflows  

at runtime 

User steering at  

runtime 

Data provenance can be defined by “the description of the origins 

of a piece of data and the process by which it arrived in a 

database”(Buneman et al.) 
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Computational Optimizations for RTM kernels 
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RTM – Computational Characteristics 

 RTM algorithm is classified as Memory-Bound 

 Low arithmetic intensity per data transfer 

 Limited not only by the processor's Flops 

 Memory Bandwidth also is a bottleneck 

 Large geological areas demands large amount of 

computational resources 

 Disk storage (PetaBytes) 

 Physical Memory (TeraBytes) 

 Massive processing resources (hundreds of TeraFlops) 

 Large amount of processing time (thousands of Hours) 

Testbed Platforms 

Computational optimizations for RTM kernels 

RTM – Model used 

Volume size: 12km x 6km x 8 km 

Mesh size 21.5 meters (structured grid) 

 Points in direction  X: 558 

 Points in direction  Y: 279 

 Points in direction  Z: 372 
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Xeon E5 2697v2: from 2.2 up to 242 Gflops/s      Xeon Phi 7120   : from 0.3 up to 269 Gflops/s 

Computational optimizations for RTM kernels - Methods 

BASE CODE 

Vs 00 

Automatic compiler 
optimization 

• -O3 

No vectorization 

• -no-vec 

No parallelization 

• -openmp-stubs 

PARALLELIZATION 

Vs 01 

VECTORIZATION 

Vs 02 

MEMORY IMPROVEMENTS 

Vs 03 

THREAD AFFINITY 

Vs 04 

RETURN TO BASIS 

Vs 05 

ALLIGN & PADDING 

Vs 06 

MEMORY PREFETCH 

Vs 07 
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Spatial discretization order 

4th 

8th 
16th 

24th 36th 

Mesh 
Spacing ( ∆x ) 

Array 
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Arithmetic 

 Intensity 

Memory 

 Amount 

Time  

Iterations 

Time Step 

( ∆t ) 

Performance 

Overall 
Time 

? 

? 

Computational optimizations for RTM kernels 

Goal:  find higher order stencil 

formulation that leads to less grid cells 

and less memory required, without loss 

of accuracy. 
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Computational optimizations for RTM kernels 

Lower memory requirement 

allow larger surveys to fit on 

coprocessor memory 
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Arithmetic 

 Intensity 

Array 

Cells 

Performance 

Overall 
Time 

? 

? 

14th Taylor 

16th Convol. 

Computational optimizations for RTM kernels 

New convolutional 

formulation maintains 

scalability to 16th order 

stencils 

Intel’s max: 209  

Intel’s max: 226  



SC15 MIC Tuning BoF 

25 

CONCLUSION / Remarks / Future Works 

 Optimization of the RTM algorithm on the Intel Xeon Phi 

 

 Development of a non-intrusive UQ technique to the optimized algorithm using Stochastic Colocation 

  Test and implementation of different dimension reduction and Interpolation levels in the Sparse grid collocation scheme  

  Compare the error with the Monte Carlo Method 

  Visualization and getting insights from UQ 

 

 Use of a Scientific Workflow Management System (CHIRON) 

 Development of a strategy to gather and query performance data while scientific workflows are executing 

 Improvement in this architecture to obtain a better performance using 1,000 cores 

 RTM workflow execution using large core counts 

 Problem of storage capacity: limited for a large-scale data app like RTM  

(In our Cluster Uranus, we produced ~40 GB of files using a small dataset) 

 

  


