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Performance Improvement of Electronic Structure
Calculations using MIC programming: A Sparse-
matrix-coupled Normal Eigenvalue Problem
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Introduction: Ongoing Project

- A High-fidelity Schrodinger-Poisson Solver
- In-house code

- The code solves large-scale electronic structures using an empirical tight-
binding approach. The calculations are self-consistent as we solve a tight-
binding Schrodinger equation coupled to a FDM Poisson equation. The code
would be useful to help experimentalists by presenting a guideline for design
of realistically sized semiconductor devices.

- Application Domain: Electrical Engineering and Solid State Physics
Execution mode: offloaded

Tools used for development, analysis and debugging
- Intel C/C++/Fortran v. 15.0.2
- Intel MPI 5.0 Update 2 for Linux and Intel MPSS v. 3.4.2

Sparse-matrix-involved operation
- Schrodinger Equations: LANCZOS lIteration
- Poisson Equations: CG lteration
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Performance

- Compelling Performance
- with and without MIC

Performance Improvement
- 1.5x~3x with xeon+MIC against the performance with xeon only

- List of optimizations that yield performance improvment
- Control of computing load in Xeon and MIC for Asynchronous offload

—> the best performance is obtained when MIC takes 65~80% of computing
load, depending on the specs of xeon server.

- Minimization of data transfer
- Schrodinger matrix (Hamiltonian) can be copied only one time.
- Minimization of Matrix Data Size: Sparse Matrix (CSR)

- Copy of Lanczos vectors can be minimized (in terms of size): nearest
neighbor coupling
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Insights

-  What we have learned?

- (Synchronous) offload can be still a good solution if the target computing
can be efficiently vectorized, i.e. dense-matrix operations. But, the sparse-
matrix-involved operations are generally hard to be efficiently vectorized in

MIC.

-  What we recommend and how we would have done it differently?
- Adopted the Asynchronous offloading to make CPUs busy with MIC

- Biggest surprises
- Optimal load balancing for MV multipler
—> the best performance is obtained when MIC takes 65~80% of computing
load, depending on the specs of xeon server. (Expected under 50% as
CPUs have better performance)
Key remaining challenges
- Large-scale BMT: in > 10 nodes
- Performance improvement: Parallelization of T matrix handler in traditional
Lanczos Loop

- Expansion: solving degenerated eigenvalues
inteD) | 4
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Intel® PCC Project: A Two-year Milestone
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- Inhomogeneous P dopant-distributions in Si Nanowires
- Performance Improvement of PDE solvers using Xeon-Phi™

Training for Scientific Computing
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- Sparse Matrix Storage Algorithm
- MIC Programming with Application Examples
- Finite Difference Methods
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- Computing Intensive:
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with less # of nodes?
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Performance Improvement: “Asynchronous” Offload M5

The real bottleneck of computing

e Vector dot-product is not expensive: All-reduce, but small communication loads.
e Vector communication is not a big deal: only communicates between adjacent layers.
e Sparse-matrix-vector multiplication itself is indeed a big deal.

Communication Pattern for MVmultiplier
Schrodinger (LANCZOS)
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- Matrix-vector multiplier (MVMul) Food for Thoughts
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: Nearest neighbor comm. e Sparse MV multiplier
- Vector dot product (VVDot) — cash miss: full performance of vectorization?
: Reduction

e Synchronous offload: CPU should be idle

- Others: No communication e Why not asynchronous offload?



Performance Improvement: Case 1 MKIETH

Benchmark in a testbed 1 @ KISTI
¢ 1 node: 4 Xeon E5-2603 v2 CPUs (1.8GHz), 16GB M w/ a 3120 card (6GB M)

e Problem size: A P-atom integrated in 22nmx22nmx22nm Si box (DOF: 5.12M, M ~ 3.8GB)
e Target: Run 5000 Lanczos iterations to find as many eigenvalues as possible

e Cond: 1 MPI process with 4 threads per CPU, 224 threads in MIC (56*4)
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- Vector dot product (VVDot) BMT Summary °
: Reduction e 85% load in MIC for MVMultiplier: Best

- Others: No communication e ~3x Improvement in MVMul, ~2x in Total



Performance Improvement: Case 2 KT

Benchmark in a testbed 2 @ KISTI — super-excellent spec

¢ 2 nodes: 20 Xeon E5-2680 v2 CPUs (2.8GHz), 256GB M w/ two 7120 card (32GB M total)
e Problem size: A P-atom integrated in 22nmx71nmx71nm Si box (DOF: 54M, M ~ 41GB)
e Target: Run 5000 Lanczos iterations to find as many eigenvalues as possible

e Cond: 4 MPI process with 10 threads per CPU, 240 threads in MIC (60*4)
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: Nearest neighbor comm. MIC load (%)
- Vector dot product (VVDot) BMT Summary
: Reduction e 65% load in MIC for MVMultiplier: Best

- Others: No communication e ~1.5x Improvement in MVMul, ~1.3x in Total



Other Progress, Near-future Plans MiSTi

Research Outcomes (Objective: 2 journal articles, 2 proceedings by May-2016)
e 1 Journal Article (Nano Letters, IF 13.7), 1 Proceeding (IEEE SISPAD) published so far.
e 1 Proceeding Accepted (MRS), 1 Journal Article under Review

Knowledge Disseminations: Education (Objective: 100 students by May-2016)
¢ Intel(Korea)-KISTI Collaborative Workshop: 25 students (Jun-15)

e HPC summer school in SNU: 30 students (Aug-15)

e Korea Supercomputing Conference: 30 developers (Oct-2015)

Near-future Plans for R/D
e Benchmark for end-to-end simulations in more realistic conditions in a large # of clusters

e Another Possibility for Performance Improvement: “T-matrix computing” in LANCZOS
e Research Papers
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