(lntel) |
experience
what's inside”

GOING PARALLEL WITH EFFIGIENCY
ON THE FUTURE KNIGHTS FAMILY

CJ Newburn, SW/HW HPC Architect, Community Builder

Nov 18,2015 SC15 IXPUG BoF:
Paving the way for Performance on Intel® Knights Landing Processors and beyond:
Unleashing the Power of Next-Generation Many-Core Processors

Intel® Xeon Phi™ x200 Product Family
(codename Knights Landing)

Compute
Platform Memory

384 GBDDR4 = Intel® Xeon® Processor Binary-Compatik
Up to) 4 = 3+ TFLOPS, 3X ST (single-thread) per.vs

= 2D Mesh Architecture
Knights

= atuaiing = Qut-of-OrderCores

A On-Package Memory
l-/
s upto (2 COres — = Upto16 GB at launch
W = Over ~400 GB/s STREAM at launch
Integrated Fabric

Fabric (optional) = 15! |ntel processor to integrate

Intel’'s HPC Scalable System Framework

A design foundation enabling wide range of highly workload-optimized solutions

Small Clusters Through Supercompu

Q i - -
Compute MemoryiStorage. @ Compute and Data-Centric Computin
:) .
FEIBIIE | ST 3 Standards-Based Programmability
Q
¢ On-Premise and Cloud-Based
Intel® Xeon® Processors Intel® True Scale Fabric Intel® SSDs Intel® Software Tools
Intel® Xeon Phi™ Intel® C_)mni-Path Intel® Lustre-based Solutions HPC Scalable Software Stack
Coprocessors Architecture Intel® Silicon Photonics Intel® Cluster Ready
Intel® Xeon Phi™ Intel® Ethernet Technoloo Program

IwUG Chris J. Newburn (CJ) IXPUG SC15 BoF

Got scale. Got efficiency?

HW component SW abstraction = What you use
- Nodes Ranks - MPI, omp target, hStreams

- Tasks - omp task, TBB, hStreams
- HW threads - SW threads - omp parallel for, TBB for
- SIMD lanes - Vectors - omp simd
- Mem bw, latency - Tiles - Memory preconditioning for locality

D Seframent Beports

1] 1511V 3 nzel rucpove + T 1U]1US WO

Stndes Dstribation Access Pattesn
I €bN Lwe
CbN Lws [E1a tier
OWb MOLK6L e 2baw s
OWb MoteL
= [esb wic z61n|
2 [owb Wsarer Conectness Repot
= [Awaonx (Lp: -
corqgswou (0 | @ Tye SaeName | Soueces Modddes e Sevidty
22 @ puaelseemfermation 2 3, twcstescop sl tmestrsene Mot 3 peotiem ot 2kems
ol -Gl 22 T02 732 502 S22 302 322 402 ¥ | gnisk viss 5 © Resd sher wrte dependency loop.ste 12 sdp. twosescop sdp twestesere M New Iformaton Titem
" - T - B O Wete shoread dependency oop.ste 12 o4 twostescpp sdp twcstesexe M New e
2616CE6q T LOM(2): 02 00 TA'S302 00052 00052 5'5)g'300'9TS g i Pustid e nformaticn 1 item
Reod st wite dependency 1 tem
Wirte ster rend dependency 1 item
0 Descrigtion | Sowce Function | Module State -
Vt u n e X10 pusielste) sl twoitencppsh man dp tucstesce M New Ad Vl S 0 r e =
3 o ——— e
P Modude
for FECs w0 s, Swcsescne 3items
340'300" R Stte
pLNIEDAT20WbZbSLIIEI@NUY 533432 21°3s¢ 5372352 S0 1 209°ese: (NN O 00+ 02 3'ate'302'Tdd Ted 2
Rhbl it X1 Read twestesese W New New 2ems
» [onc21q6 guA Ledl [] | 135502 0'0052) 0'0052] 5'518'300'8 7 [= - Mot a probiem 1item
ol W Diaie @boot Jox igse] Bonst 1 | s s 4
o)) arack oS (0L uws obs’ con” EWSCHNG L1ws pA NEISSHOU 2w one- HeAIS uar u R
Obeub BsIoU \ krUcHou\ | bOfeUr™ @I Ejgba oL U = weencgou? cbll s
bOrs™ un CbN Liws +@ 112 Wete sdp tacritencppS4 main sy twcstesese N New
cuonbiud: | 0beUWb VB0 \ LUCRIOU \ CSl] 269K | [»] [¢] [¥] - b
———— - =11 ¢ sl
1be| [gm cojiecriou rod | [m 2nwws 6 . 66 g g » r e
Soet By e Name »

W VaAguceq Hofzbogz Horzborz Alembolug (CPSUAE) @ |U£6] ALNUE YwbeL XE SO12

Chris J. Newburn (CJ) IXPUG SC15 BoF

Wzt eloour YOUR erficiency?

Chris J. Newburn (CJ) IXPUG SC15 BoF

Go it alone Join the village

Start from scratch - Stand on others’ shoulders

Figure out what matters - See what didn't matter

Reinvent - Enhance

Quit when it looks good enough - Gain deeper understanding

Keep it to yourself - Share your insights
TECHNIQUES

Tools Experiment design

Working groups

A plan for optimization Set goals
Study code, review algorithm

- Work outside inside out, learn when it’s time to move on

Scale across nodes:
MPI, offload

Hybridize (thread),
scale within node

OpenM

Share what
you learned

[SIMD

Vectorize, shrink path length
streamline ctrl, accesses

e—_

Fit to mode/

Mem ory
\

MPI vs. OpenMP Approach goal for = Reduce memory
trade-offs node performance BW and latency sensitivity,
l precondition data

|w UG C. .ris J. Newburn (CJ) IXPUG SC15 BoF

Trends that are here to stay

Data parallelism
Lots of threads, spent on MPI ranks or OpenMP/TBB/pthreads
Improving support for both peak tput and modest/single thread
Can we keep this debuggable with a sequential semantic?
Bigger, better, faster memory
High capacity, high bandwidth, lower latency DRAM
Effective caching and paging
Increasing support for irregular memory refs, modest tuning
Can we manage these with a declarative interface?
ISA innovation
Increasing support for vectorization, new usages
Give the tools more guidance, or create new language interfaces?

Fundamental or incremental code change.s?

Incremental changes, significant gains ©
Parallelization — consistent strategy
MPI| vs. OpenMP — already needed to tune and tweak
Less thread-level parallelism required
Vectorization — more opportunity, more profitable
Enable new features with memory tuning
Access MCDRAM with special allocation
Blocking for MCDRAM vs. just cache

Tolerating a lack of locality, before well tuned

We strongly encourage tuning! But until you get there, we help tolerate latency

Block Unblocked
\ 4
< latency _ _
High bandwidth demand

Lower bandwidth 400+ GB/s Outstanding misses enqueued
Less sensitive to latency Sensitive to latency

< 16GB_MCDRAM
KNL DDR — up to 384GB

Tuning helps locality: lower BW demand, shorter latency
Until better tuning is achieved, we make the on-ramp gentler:
-> higher BW support, shorter latency to DRAM, more outstanding misses

Iw UG Chris J. Newburn (CJ) IXPUG SC15 BoF

Enhanced core

2 thread is bonus vs.
required
Higher

frequency

Core

VPU

3x higher peak, up to 3x better single-thread performance
2 VPUs, higher frequency, more cores, fewer issue restrictions
Gather/scatter with lower overhead

http://www.wpclipart.com/time/stopwatch/
|)PUé Chris J. Newburn (CJ) IXPUG SC15 BoF

KNL-specific SW enabling

Recompilation, with -xMIC-AVX512
Unaligned support
Access to faster svyml routines than earlier Xeon

Threading
Now possible to support many more MPI ranks, given larger memory capacity
1 thread per core is now often sufficient

Vectorization

New cases become efficient: compress, expand, index conflicts

MCDRAM and memory tuning

Selectively allocate memory, in non-cached mode
Tile, if working set doesn’t fitin MCDRAM
Consider using 1GB pages

Offload

Continues to be supported, for compiler, hStreams,

How tools help provide insight

Development tools
Several tools for MCDRAM allocations: memkind, numactl, libhugetlbfs, ...
Intel® Software Development Emulator, v 7.5+
hStreams supports HBM allocation, task concurrency, offload

Analysis tools
VTune “memory” analysis for high bandwidth memory analysis

Focus on insight: Don’t forget to correlate performance results with PerfMon data

Manual steps

Building

Change compiler switches in make files
Coding

Parallelization: vectorization, offload

Memory management: MCDRAM enumeration and memory allocation
Tuning

Potentially fewer threads: more cores but less need for SMT

More memory - more MPI ranks

Take-aways

Keep doing what you were doing for KNC and Xeon
Some goodness comes for free with a recompile
With some extra enabling, use new MCDRAM feature

Giolng [parallgl; now co you scale?
Witn erflciency: youlr cocdls, Youl, commmmunity
SUrpass tne mundanes leverage the irioe

Chris J. Newburn (CJ) IXPUG SC15 BoF

IXPUG working groups

MIC Tuning — umbrella
Data preconditioning for locality

Life sciences - starting Dec
New memory types - starting Dec

General vectorization
- Vector packing and scheduling

Floating point precision
Nested parallelism
Performance portability
New MPI features

Some examples of thinking bigger

How can you share the good judgment you developed from experience?
Does your work give rise to a collaborative research agenda?
Who could you approach to get traction with?

Filing bugs and feature requests is an investment in the future
Business-motivated test cases and reproducers are key

Backup

Resources

What's public

MCDRAM

Expand and compress ‘
Conflict detection details
Broadcast details

Overview of tools

References

. guide

" : the online document of the User
and Reference Guide for the Intel® C++ Compiler

’ : the interactive reference tool for Intel intrinsic

instructions

The Intel Instruction Set Architecture Extensions page:

https://software.intel.com/en-us/articles/porting-applications-from-knights-corner-to-knights-landing
https://software.intel.com/en-us/node/523776
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/en-us/intel-isa-extensions

Knights Landing Overview
- Stand-alone, Self-boot CPU

- 60+ new Silvermont-based cores
- 4 Threads per core
- AVX 512 vector units

- Binary Compatible’ with Intel® Xeon® processor

- 2-dimensional Mesh on-die interconnect

60+ OoO Cores

4T/Core
AVX 512 Vectors MCDRAM: On-Package memory: 400+ GB/s of BW?

DDR memory

Intel® Omni-path Fabric
Intel® Omni-Path

Fabric

3+ TFLops (DP) peak per package

Package

~3x ST performance over KNC

Source Intel: All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. KNL data are preliminary based on current expectations and are subject to
change without notice. 1Binary Compatible with Intel Xeon processors using Haswell Instruction Set (except TSX). 2Bandwidth numbers are based on STREAM-like memory access pattern when MCDRAM used as flat memory. Results have
been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For more information go to

IP U G Chris J. Newburn (CJ) IXPUG SC15 BoF

TUEC IMTEL # YENN DUI= [ISFRS CROID

http://www.intel.com/performance

Knights Landing Products

16 GB

< <
%: Eogflirt DD:] —> OPF HFI |5 PCle
O P 0O End Point
> PCle
Root
m B

Card

DDR DDR No DDR Channels
MCDRAM: up to 16 GB MCDRAM: up to 16 GB MCDRAM: up to 16 GB
Gen3 PCle (Root port) Gen3 PCle (Root port) Gen3 PCle (End point)

Omni-Path Fabric

Self Boot Socket PCle Card
Potential future options subject to change without notice. Codenames.
All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification.
|X3UG Chris J. Newburn (CJ) IXPUG SC15 BoF 33

Beyond AVX-512 Foundation

T e L

Prefetch cache line into the L2 cache with
- Intel AVX-512 Prefetch PREFETCHWT1 ot fo wiite

Instructions (PFI) 3
nsiructions — VGATHERPF{D,Q}0,13PS E;(;fl_eztcz:r; :ﬁé:tor of D/Qword indexes into the
3
< Prefetch vector of D/Qword indexes into the
- HECATERPHD QSRS L1/L2 cache with intent to write
- Intel AVX-512 Exponential and — —
i i VEXP2{PS,PD} Computes approximation of 2* with maximum
Reciprocal Instructions (ERI) » ' relative error of 223
T o : :
. ~ Computes approximation of reciprocal with max
- Intel AVX-512 Conflict E VRCP28{PS,PD} relative error of 228 before rounding
n | | X
Detection Instructions (CDl) = Computes approximation of reciprocal square
VRSQRT28{PS,PD} root with max relative error of 2-28 before
rounding
Detect duplicate values within a vector and
8 VRSB ADIEIRGR 0 create conflict-free subsets
Count the number of leading zero bits in each
g VPLZCNT{D,Q} cloment g
< VPBROADCASTM{B2Q,W2D} Broadcast vector mask into vector elements

3 Memory Modes Cache Mdel

e Mode selected at boot
« MCDRAM-Cache covers all DDR

N
= — Hybrid Model
o -
<
'
@)
17
>
L
al

Flat Models

Flat MCDRAM: SW Architecture
MCDRAM exposed as a separate NUMA node

KNL with 2 NUMA nodes Intel® Xeon® with 2 NUMA nodes
DDR KNL M z DDR Xeon Xeon DDR
Node O Node 1 Node O Node 1

Memory allocated in DDR by default
« Keeps low bandwidth data out of MCDRAM.

Apps explicitly allocate important data in MCDRAM
- “Fast Malloc” functions: Built using NUMA allocations functions
 “Fast Memory"” Compiler Annotation: For use in Fortran.

Flat MCDRAM using existing NUMA support in Legacy OS

Flat MCDRAM SW Usage: Code Snippets

Allocate 1000 floats from DDR Allocate 1000 floats from MCDRAM
float *fv; float *fv,;
fv = (float *)malloc(sizeof(float) * 1000); fv = (float *)hbw malloc (sizeof(float) * 1000);,

Allocate arrays from MCDRAM & DDR in Intel FORTRAN

c Declare arrays to be dynamic
REAL, ALLOCATABLE :: A(:), B(:), C(:)

!DECS ATTRIBUTES, FASTMEM :: A
NSIZE=1024

c allocate array ‘A’ from MCDRAM
ALLOCATE (A(1:NSIZE))

c Allocate arrays that will come from DDR

ALLOCATE (B(NSIZE), C(NSIZE))

Keeping the App Effort Level Low

Chris J. Newburn (CJ) IXPUG SC15 BoF

High Bandwidth (HBW) Malloc API

HBWMALLOC (3) HBWMALLOC HBWMALLOC (3)

NAME
hbwmalloc - The high bandwidth memory interface

SYNOPSIS
#include <hbwmalloc.h>

Link with -ljemalloc -lnuma -lmemkind -lpthread

int hbw check available (void);

void* hbw malloc(size t size);

void* hbw calloc(size t nmemb, size t size);

void* hbw realloc (void *ptr, size t size);

void hbw free(void *ptr);

int hbw posix memalign(void **memptr, size t alignment, size t size);

int hbw posix memalign psize (void **memptr, size t alignment, size t size, int pagesize);
int hbw get policy(void) ;

void hbw set policy(int mode) ;

Publicly released at https://github.com/memkind
|)P UG Chris J. Newburn (CJ) IXPUG SC15 BoF 38

Expand & Compress

for(j=0, i=0; i<N; i++) {
if(C[i] '=0.0) {
B[i] = A[i] * C[j++];

Allows vectorization of conditional loops

* Opposite operation (compress) in AVX512F
* Similar to FORTRAN pack/unpack intrinsics }
* Provides memory fault suppression }

* Faster than alternative gather/scatter

VEXPANDPS zmmO {k2}, [rax]

Moves compressed (consecutive) elements in register or memory to sparse
elements in register (controlled by mask), with merging or zeroing

mem [i Blls 76543210

zmmO
k2 = 0x4DB1

Motivation for Conflict Detection

- Sparse computations are common in HPC, but hard to
vectorize due to race conditions

- Consider the “histogram” problem:

for(i=0; i<16; i++) { A[B[i]]++; }

index = vload &B[1i] // Load 16 B[1i]
old val = vgather A, index // Grab A[B[i]]

new_val = vadd old_val, +1.0 // Compute new values
vscatter A, index, new_val // Update A[B[i]]

« Code aboveis wrong if any values within BJ[i] are duplicated
— Only one update from the repeated index would be registered!

« A solution to the problem would be to avoid executing the sequence
gather-op-scatter with vector of indexes that contain conflicts

Conflict Detection Instructions in AVX-512

= VPCONFLICT instruction detects
elements with previous conflicts in a

e CoLinstr, '

> Allows to generate a mask with a subset of VPCONFLICT{D,Q} zmm1{k1}, zmm2/mem
elements that are guaranteed to be conflict VPBROADCASTM{W2D,B2Q} zmm1, k2
free VPTESTNM{D,Q} k2{k1}, zmm2, zmm3/mem
> The computation loop can be re-executed VPLZCNT{D,Q} zmm1 {k1}, zmm2/mem

with the remaining elements until all the

index = vload &B[1i] // Load 16 B[i]
pending elem = OXFFFF; // all still
remaining
do {

curr_elem = get conflict free subset(index, pending elem)

old val = vgather {curr_elem} A, index // Grab A[B[1i]]

new_val vadd old val, +1.0 // Compute new
values

vscatter A {curr_elem}, index, new val // Update A[B[i]]

pending elem = pending elem ”~ curr_elem // remove done idx
} while (pending_elem)

VPCONFLICT{D,Q}

. VPCONFLICT{D,Q} zmm1{k1Hz}, zmm2/B(mV)

« For every element in ZMM2, compare it against everybody and generate
a mask identifying the matches (but ignoring elements to the ‘left’ of the
current one —i.e. “newer”)

« Store every mask in every element destination in ZMM1

N

zmml ((2)| 1 | 3

2

Isb

3221

3

gl

\

0001_1001_1001_1001

00oo_0000_0100_0100

/

0000_0000_0000_0000

0000_0000 0001_1001

Chris J. Newburn (CJ) IXPUG SC15 BoF

Optimized Algorithm

Store
results

Obtain recurrence indices
for each 16 scalar iterations {

indices = vload &index arrayl[1i]

vpconflictd comparisons, indices
vplzcntd tmp lzcnt, comparisons
\ vpsubd perm idx, all 31s, tmp lzcnt

temp values = do first iteration(); // gather + compute

vptestmd to_do {k0O}, comparisons, all ones 7/ anything left?

//'while (to_do) | ‘\\

vpbroadcastmd tmp, to do

vptestnmd mask {to do}, comparisons, tmp Re-do Conflicting indices reusing

I | results
directly from the vector

vpermd tmp values {mask}, perm idx
tmp values = do_work(mask); // just compute!
to do 7= mask;

} while(to do);

vscatter indices, A, tmp values

/

Chris J. Newburn (CJ) IXPUG SC15 BoF

Embedded Broadcasts, Masking Support

- VFMADD231PS zmm1, zmm2, C {1to16}

> Scalars from memory are first class citizens float32 A[N], B[N], C;
« Broadcast one scalar from memory into all vector S
elements before operation I;O’(’zoi i<8; it++)
> Memory fa.ul_t suppression avoids fetching the scalar if if(A[i]1=0.0)
no mask bit is set to 1 A[i] = Afi] + C* B[i];

« Other “tuples” supported
> Memory only touched if at least one consumer lane

needs the data
_ VBROADCASTSS zmm1 {k1}, [rax]
> Forinstance, when broadcast a tuple of 4 elements, the VBROADCASTF64X2 zmm2 {k1}, [rax]

- : VBROADCASTF32X4 zmm3 {k1}, [rax]
semantics check for every element being really used VBROADGASTFa2X8 zmma, {k1},

- E.g.:element 1 checks for mask bits 1, 5, 9, 13, ... [rax]

Tools overview

MPI Memory
> development: Intel MPI > analysis: MPS, VTune, Advisor
> quick summary: MPS
> drill down, correctness: ITAC Libraries
> math: MKL
Threads » data analytics: DAAL
» development: OpenMP, TBB, Cilk > media: IPP
» correctness: Inspector
> parallelism: Advisor Vectors
» scaling: VTune > development: C++/Fortran Compilers

> parallelism: Advisor
> analysis: VTune, Advisor
» diagnostics: compiler reports, Advisor

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk,
and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

