
Going parallel with efficiency
on the future Knights family
CJ Newburn, SW/HW HPC Architect, Community Builder

Nov 18, 2015 SC15 IXPUG BoF:
Paving the way for Performance on Intel® Knights Landing Processors and beyond:
Unleashing the Power of Next-Generation Many-Core Processors

Chris J. Newburn (CJ) IXPUG SC15 BoF

Intel® Xeon Phi™ x200 Product Family
(codename Knights Landing)

…

.
.

.

.
.

.

Integrated Fabric

up to 72 Cores

Processor Package

Compute

 Intel® Xeon® Processor Binary-Compatible

 3+ TFLOPS, 3X ST (single-thread) perf. vs KNC

 2D Mesh Architecture

 Out-of-Order Cores

On-Package Memory

 Up to 16 GB at launch

 Over ~400 GB/s STREAM at launch

Platform Memory

Up to 384 GB DDR4

Fabric (optional) 1st Intel processor to integrate

Knights
Landing

Chris J. Newburn (CJ) IXPUG SC15 BoF

Intel’s HPC Scalable System Framework

A design foundation enabling wide range of highly workload-optimized solutions

Intel® Xeon® Processors

Intel® Xeon Phi™
Coprocessors

Intel® Xeon Phi™
Processors

Intel® True Scale Fabric

Intel® Omni-Path
Architecture

Intel® Ethernet

Intel® SSDs

Intel® Lustre-based Solutions

Intel® Silicon Photonics
Technology

Intel® Software Tools

HPC Scalable Software Stack

Intel® Cluster Ready
Program

Compute Memory/Storage

Fabric Software

Small Clusters Through Supercomputers

Compute and Data-Centric Computing

Standards-Based Programmability

On-Premise and Cloud-Based
Intel Silicon

Photonics

Chris J. Newburn (CJ) IXPUG SC15 BoF

HW component

 Nodes

 HW threads

 SIMD lanes

 Mem bw, latency

6

Got scale. Got efficiency?

SW abstraction

 Ranks

 Tasks

 SW threads

 Vectors

 Tiles

What you use

 MPI, omp target, hStreams

 omp task, TBB, hStreams

 omp parallel for, TBB for

 omp simd packing?

 Memory preconditioning for locality

ITAC, MPI Vtune Advisor

Chris J. Newburn (CJ) IXPUG SC15 BoF

Chris J. Newburn (CJ) IXPUG SC15 BoF

 Start from scratch

 Figure out what matters

 Reinvent

 Quit when it looks good enough

 Keep it to yourself

8

Go it alone Join the village

 Stand on others’ shoulders

 See what didn’t matter

 Enhance

 Gain deeper understanding

 Share your insights

Tools

Techniques

Working groups

Experiment design

Chris J. Newburn (CJ) IXPUG SC15 BoF

 Work outside inside out, learn when it’s time to move on

9

A plan for optimization

Distribute across platform

OpenMP

SIMD

Memory

Scale across nodes:
MPI, offload

Hybridize (thread),
scale within node

Vectorize, shrink path length
streamline ctrl, accesses

Reduce memory
BW and latency sensitivity,

precondition data

MPI vs. OpenMP
trade-offs

Set goals
Study code, review algorithm

Approach goal for
node performance

Share what
you learned

Fit to model

Chris J. Newburn (CJ) IXPUG SC15 BoF

Data parallelism

• Lots of threads, spent on MPI ranks or OpenMP/TBB/pthreads

• Improving support for both peak tput and modest/single thread

• Can we keep this debuggable with a sequential semantic?

Bigger, better, faster, persistent memory

• High capacity, high bandwidth, lower latency, persistent DRAM

• Effective caching and paging

• Increasing support for irregular memory refs, modest tuning

• Can we manage these with a declarative interface?

ISA innovation

• Increasing support for vectorization, new usages

Give the tools more guidance, or create new language interfaces?

11

Trends that are here to stay

Chris J. Newburn (CJ) IXPUG SC15 BoF

Incremental changes, significant gains

Parallelization – consistent strategy

• MPI vs. OpenMP – already needed to tune and tweak

• Less thread-level parallelism required

• Vectorization – more opportunity, more profitable

Enable new features with memory tuning

• Access MCDRAM with special allocation

• Blocking for MCDRAM vs. just cache

12

Fundamental or incremental code changes?

Chris J. Newburn (CJ) IXPUG SC15 BoF

Tuning helps locality: lower BW demand, shorter latency

Until better tuning is achieved, we make the on-ramp gentler:

 higher BW support, shorter latency to DRAM, more outstanding misses

15

Tolerating a lack of locality, before well tuned

Block

Block

Block

Block

Lower bandwidth

Less sensitive to latency

We strongly encourage tuning!

Unblocked

400+ GB/s
High bandwidth demand

Outstanding misses enqueued

Sensitive to latency

But until you get there, we help tolerate latency

< latency

KNL DDR – up to 384GB
≤ 16GB MCDRAM

Chris J. Newburn (CJ) IXPUG SC15 BoF

Core

Core
Core

Core

3x higher peak, up to 3x better single-thread performance

2 VPUs, higher frequency, more cores, fewer issue restrictions

Gather/scatter with lower overhead

19

Enhanced core

CoreCore

VPU VPU

http://www.wpclipart.com/time/stopwatch/

2nd thread is bonus vs.
required

Higher
frequency

Chris J. Newburn (CJ) IXPUG SC15 BoF

Recompilation, with –xMIC-AVX512
 Unaligned support

 Access to faster svml routines than earlier Xeon

Threading
 Now possible to support many more MPI ranks, given larger memory capacity

 1 thread per core is now often sufficient

Vectorization
 New cases become efficient: compress, expand, index conflicts

MCDRAM and memory tuning
 Selectively allocate memory, in non-cached mode

 Tile, if working set doesn’t fit in MCDRAM

 Consider using 1GB pages

Offload
 Continues to be supported, for compiler, hStreams, MKL AO

KNL-specific SW enabling

Chris J. Newburn (CJ) IXPUG SC15 BoF

Development tools
 Several tools for MCDRAM allocations: memkind, numactl, libhugetlbfs, …

 Intel® Software Development Emulator, v 7.5+

 hStreams supports HBM allocation, task concurrency, offload

Analysis tools
 VTune “memory” analysis for high bandwidth memory analysis

Focus on insight: Don’t forget to correlate performance results with PerfMon data

How tools help provide insight

Chris J. Newburn (CJ) IXPUG SC15 BoF

Building
 Change compiler switches in make files

Coding
 Parallelization: vectorization, offload

 Memory management: MCDRAM enumeration and memory allocation

Tuning
 Potentially fewer threads: more cores but less need for SMT

 More memory more MPI ranks

Manual steps

Chris J. Newburn (CJ) IXPUG SC15 BoF

Keep doing what you were doing for KNC and Xeon

Some goodness comes for free with a recompile

With some extra enabling, use new MCDRAM feature

Take-aways

Chris J. Newburn (CJ) IXPUG SC15 BoF

Chris J. Newburn (CJ) IXPUG SC15 BoF

IXPUG working groups

 MIC Tuning – umbrella

 Data preconditioning for locality

 Life sciences – starting Dec

 New memory types – starting Dec

 General vectorization

 Vector packing and scheduling

 Floating point precision

 Nested parallelism

 Performance portability

 New MPI features

28

Chris J. Newburn (CJ) IXPUG SC15 BoF

Some examples of thinking bigger

 How can you share the good judgment you developed from experience?

 Does your work give rise to a collaborative research agenda?

 Who could you approach to get traction with?

 Filing bugs and feature requests is an investment in the future

 Business-motivated test cases and reproducers are key

29

Chris J. Newburn (CJ) IXPUG SC15 BoF

 Resources

 What’s public

 MCDRAM

 Expand and compress

 Conflict detection details

 Broadcast details

 Overview of tools

Backup

Chris J. Newburn (CJ) IXPUG SC15 BoF

 Porting guide

 Intrinsics for Intel® AVX-512 instructions : the online document of the User
and Reference Guide for the Intel® C++ Compiler

 The Intel® Intrinsics Guide : the interactive reference tool for Intel intrinsic
instructions

 Intel® Architecture Instruction Set Extensions Programming Reference

 The Intel Instruction Set Architecture Extensions page:
https://software.intel.com/en-us/intel-isa-extensions

References

https://software.intel.com/en-us/articles/porting-applications-from-knights-corner-to-knights-landing
https://software.intel.com/en-us/node/523776
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/en-us/intel-isa-extensions

Chris J. Newburn (CJ) IXPUG SC15 BoF 32

Knights Landing Overview
 Stand-alone, Self-boot CPU

 60+ new Silvermont-based cores

 4 Threads per core

 AVX 512 vector units

 Binary Compatible1 with Intel® Xeon® processor

 2-dimensional Mesh on-die interconnect

MCDRAM: On-Package memory: 400+ GB/s of BW2

 DDR memory

 Intel® Omni-path Fabric

 3+ TFLops (DP) peak per package

~3x ST performance over KNC

60+ OoO Cores

4T/Core

AVX 512 Vectors

Up to 16 GB
MCDRAM

Intel® Omni-Path

Fabric

DDR
PCIe

P
a

c
k

a
g

e

Source Intel: All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. KNL data are preliminary based on current expectations and are subject to

change without notice. 1Binary Compatible with Intel Xeon processors using Haswell Instruction Set (except TSX). 2Bandwidth numbers are based on STREAM-like memory access pattern when MCDRAM used as flat memory. Results have

been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance.

Fabric

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance

http://www.intel.com/performance

Chris J. Newburn (CJ) IXPUG SC15 BoF 33

Knights Landing Products

KNL

16 GB

PCH

O
P

F
a
b

ri
c

D
D

R
4

OPF HFI

D
D

R
4

KNL

16 GB

PCH

PCIe

Root

Port

KNL

16 GB

PCH

PCIe

End Point

KNL KNL CardKNL with Fabric

DDR

MCDRAM: up to 16 GB

Gen3 PCIe (Root port)

DDR

MCDRAM: up to 16 GB

Gen3 PCIe (Root port)

Omni-Path Fabric

No DDR Channels

MCDRAM: up to 16 GB

Gen3 PCIe (End point)

Self Boot Socket PCIe Card

C
a
rd

PCIe

Root port

Potential future options subject to change without notice. Codenames.

All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification.

Chris J. Newburn (CJ) IXPUG SC15 BoF

Beyond AVX-512 Foundation

• Intel AVX-512 Prefetch
Instructions (PFI)

• Intel AVX-512 Exponential and
Reciprocal Instructions (ERI)

• Intel AVX-512 Conflict
Detection Instructions (CDI)

CPUID Instructions Description

A
V
X
5
1
2
P
F

PREFETCHWT1
Prefetch cache line into the L2 cache with
intent to write

VGATHERPF{D,Q}{0,1}PS
Prefetch vector of D/Qword indexes into the
L1/L2 cache

VSCATTERPF{D,Q}{0,1}PS
Prefetch vector of D/Qword indexes into the
L1/L2 cache with intent to write

A
V
X
5
1
2
E
R

VEXP2{PS,PD}
Computes approximation of 2x with maximum
relative error of 2-23

VRCP28{PS,PD}
Computes approximation of reciprocal with max
relative error of 2-28 before rounding

VRSQRT28{PS,PD}

Computes approximation of reciprocal square
root with max relative error of 2-28 before
rounding

A
V
X
5
1
2
C
D

VPCONFLICT{D,Q}
Detect duplicate values within a vector and
create conflict-free subsets

VPLZCNT{D,Q}
Count the number of leading zero bits in each
element

VPBROADCASTM{B2Q,W2D}
Broadcast vector mask into vector elements

Chris J. Newburn (CJ) IXPUG SC15 BoF

3 Memory Modes

35

Hybrid Model

DDRMCDRAM

MCDRAM

DDR

MCDRAM

DDR

MCDRAM

Flat Models

P
h

y
s
ic

a
l
A

d
d

re
s
s

DDRMCDRAM

Cache Model

• Mode selected at boot
• MCDRAM-Cache covers all DDR

Chris J. Newburn (CJ) IXPUG SC15 BoF 36

Flat MCDRAM: SW Architecture

Memory allocated in DDR by default

• Keeps low bandwidth data out of MCDRAM.

Apps explicitly allocate important data in MCDRAM

• “Fast Malloc” functions: Built using NUMA allocations functions

• “Fast Memory” Compiler Annotation: For use in Fortran.

Flat MCDRAM using existing NUMA support in Legacy OS

Node 0

Xeon Xeon DDRDDRKNL
MC

DRAMDDR

MCDRAM exposed as a separate NUMA node

Node 1Node 0 Node 1

Intel® Xeon® with 2 NUMA nodesKNL with 2 NUMA nodes

≈

Chris J. Newburn (CJ) IXPUG SC15 BoF 37

Flat MCDRAM SW Usage: Code Snippets

float *fv;

fv = (float *)malloc(sizeof(float) * 1000);

Allocate 1000 floats from DDR
float *fv;

fv = (float *)hbw_malloc(sizeof(float) * 1000);

Allocate 1000 floats from MCDRAM

c Declare arrays to be dynamic

REAL, ALLOCATABLE :: A(:), B(:), C(:)

!DEC$ ATTRIBUTES, FASTMEM :: A

NSIZE=1024

c

c allocate array ‘A’ from MCDRAM

c

ALLOCATE (A(1:NSIZE))

c

c Allocate arrays that will come from DDR

c

ALLOCATE (B(NSIZE), C(NSIZE))

Allocate arrays from MCDRAM & DDR in Intel FORTRAN

Keeping the App Effort Level Low

Chris J. Newburn (CJ) IXPUG SC15 BoF 38

High Bandwidth (HBW) Malloc API

HBWMALLOC(3) HBWMALLOC HBWMALLOC(3)

NAME

hbwmalloc - The high bandwidth memory interface

SYNOPSIS

#include <hbwmalloc.h>

Link with -ljemalloc -lnuma -lmemkind -lpthread

int hbw_check_available(void);

void* hbw_malloc(size_t size);

void* hbw_calloc(size_t nmemb, size_t size);

void* hbw_realloc (void *ptr, size_t size);

void hbw_free(void *ptr);

int hbw_posix_memalign(void **memptr, size_t alignment, size_t size);

int hbw_posix_memalign_psize(void **memptr, size_t alignment, size_t size, int pagesize);

int hbw_get_policy(void);

void hbw_set_policy(int mode);

Publicly released at https://github.com/memkind

Chris J. Newburn (CJ) IXPUG SC15 BoF

Expand & Compress

VEXPANDPS zmm0 {k2}, [rax]

Moves compressed (consecutive) elements in register or memory to sparse
elements in register (controlled by mask), with merging or zeroing

[rax]

YY7Y 4Y56 12Y3 0YYYzmm0

0010 1011 1101 1000k2 = 0x4DB1

0123456781415 …mem lsb

lsb

Allows vectorization of conditional loops
• Opposite operation (compress) in AVX512F

• Similar to FORTRAN pack/unpack intrinsics

• Provides memory fault suppression

• Faster than alternative gather/scatter

for(j=0, i=0; i<N; i++) {

if(C[i] != 0.0) {

B[i] = A[i] * C[j++];

}

}

Chris J. Newburn (CJ) IXPUG SC15 BoF

Motivation for Conflict Detection

 Sparse computations are common in HPC, but hard to
vectorize due to race conditions

 Consider the “histogram” problem:

index = vload &B[i] // Load 16 B[i]
old_val = vgather A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new values
vscatter A, index, new_val // Update A[B[i]]

for(i=0; i<16; i++) { A[B[i]]++; }

• Code above is wrong if any values within B[i] are duplicated

− Only one update from the repeated index would be registered!

• A solution to the problem would be to avoid executing the sequence

gather-op-scatter with vector of indexes that contain conflicts

Chris J. Newburn (CJ) IXPUG SC15 BoF

Conflict Detection Instructions in AVX-512

 VPCONFLICT instruction detects
elements with previous conflicts in a
vector of indexes

 Allows to generate a mask with a subset of
elements that are guaranteed to be conflict
free

 The computation loop can be re-executed
with the remaining elements until all the
indexes have been operated upon

index = vload &B[i] // Load 16 B[i]
pending_elem = 0xFFFF; // all still
remaining
do {

curr_elem = get_conflict_free_subset(index, pending_elem)
old_val = vgather {curr_elem} A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new

values
vscatter A {curr_elem}, index, new_val // Update A[B[i]]
pending_elem = pending_elem ^ curr_elem // remove done idx

} while (pending_elem)

CDI instr.
VPCONFLICT{D,Q} zmm1{k1}, zmm2/mem

VPBROADCASTM{W2D,B2Q} zmm1, k2

VPTESTNM{D,Q} k2{k1}, zmm2, zmm3/mem

VPLZCNT{D,Q} zmm1 {k1}, zmm2/mem

8

Chris J. Newburn (CJ) IXPUG SC15 BoF

VPCONFLICT{D,Q}

• VPCONFLICT{D,Q} zmm1{k1}{z}, zmm2/B(mV)

• For every element in ZMM2, compare it against everybody and generate
a mask identifying the matches (but ignoring elements to the ‘left’ of the
current one –i.e. “newer”)

• Store every mask in every element destination in ZMM1

2 1 3 2 2 1 3 2 2 1 3 2 2 1 3 2zmm1

0001_1001_1001_1001

0000_0000_0001_1001

0000_0000_0100_0100

0000_0000_0000_0000

lsb

Chris J. Newburn (CJ) IXPUG SC15 BoF

Optimized Algorithm

for each 16 scalar iterations {

indices = vload &index_array[i]

vpconflictd comparisons, indices

vplzcntd tmp_lzcnt, comparisons

vpsubd perm_idx, all_31s, tmp_lzcnt

temp_values = do_first_iteration(); // gather + compute

vptestmd to_do {k0}, comparisons, all_ones // anything left?

while (to_do) {

vpbroadcastmd tmp, to_do

vptestnmd mask {to_do}, comparisons, tmp

vpermd tmp_values {mask}, perm_idx

tmp_values = do_work(mask); // just compute!

to_do ^= mask;

} while(to_do);

vscatter indices, A, tmp_values

}

Obtain recurrence indices

Store

results

Re-do conflicting indices reusing

results

directly from the vector

Chris J. Newburn (CJ) IXPUG SC15 BoF

Embedded Broadcasts, Masking Support

 VFMADD231PS zmm1, zmm2, C {1to16}

 Scalars from memory are first class citizens

• Broadcast one scalar from memory into all vector
elements before operation

 Memory fault suppression avoids fetching the scalar if
no mask bit is set to 1

 Other “tuples” supported

 Memory only touched if at least one consumer lane
needs the data

 For instance, when broadcast a tuple of 4 elements, the
semantics check for every element being really used

• E.g.: element 1 checks for mask bits 1, 5, 9, 13, …

float32 A[N], B[N], C;

for(i=0; i<8; i++)
{

if(A[i]!=0.0)
A[i] = A[i] + C* B[i];

}

VBROADCASTSS zmm1 {k1}, [rax]

VBROADCASTF64X2 zmm2 {k1}, [rax]

VBROADCASTF32X4 zmm3 {k1}, [rax]

VBROADCASTF32X8 zmm4, {k1},

[rax]

…

Chris J. Newburn (CJ) IXPUG SC15 BoF

MPI

 development: Intel MPI

 quick summary: MPS

 drill down, correctness: ITAC

Threads

 development: OpenMP, TBB, Cilk

 correctness: Inspector

 parallelism: Advisor

 scaling: VTune

45

Tools overview

Memory

 analysis: MPS, VTune, Advisor

Libraries

 math: MKL

 data analytics: DAAL

 media: IPP

Vectors

 development: C++/Fortran Compilers

 parallelism: Advisor

 analysis: VTune, Advisor

 diagnostics: compiler reports, Advisor

Chris J. Newburn (CJ) IXPUG SC15 BoF

Legal Disclaimer & Optimization Notice

 INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

 Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products.

 Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk,
and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

46

