
SC15 MIC Tuning BoF
1

Vectorisation efficiency in a Gadget kernel:

dealing with conditionals and data access

Luigi Iapichino

Leibniz-Rechenzentrum (LRZ), Garching b. München, Germany

Collaborators: N. Hammer, A. Karmakar (LRZ)

in the framework of the Intel® Parallel Computing Center in Garching (LRZ – TUM)

Partners: M. Petkova, K. Dolag (USM München, Germany)

SC15 MIC Tuning BoF
2

Background

 Gadget: TreePM N-body + SPH code, numerical simulations of cosmological

structure formation

 Work performed on a stand-alone,

representative code kernel

 Execution modes:

 native on Intel® Xeon (tested on IVB and HSW) and

 native on Xeon Phi™

 Main tools: Intel® Advisor 2016, compiler reports

SC15 MIC Tuning BoF
3

Motivations of this work

 Successfully implemented code improvements:

 Particle selection, instead of particle sorting

 Restructuring of the parallelisation strategy as a lockless scheme (OpenMP dynamic

scheduling)

 Data locality: from AoS to SoA

 Previous performance improvement with respect to original baseline: 5.8x on Xeon IVB, 13.3x

on KNC.

 Vectorisation: work (in progress) on the kernel main compute loop

 Roughly 90% of the vectorisation potential of this kernel

 Prototype loop in the Gadget code

 Similarity with many other N-Body codes

SC15 MIC Tuning BoF
4

Obstacles to vectorization efficiency - pseudocode

for (n = 0, n < neighbouring particles (selected)) {

j = ngblist[n]; // getting the index from the particle data structure (SoA)

if (particle n within smoothing length) { // Problem 1: if statement

inlined_function1(…..);

inlined_function2(…..);

}

vx += NewPart.Vel[0][j]; // Problem 2: indirect (strided) access to the data

…

v2 += NewPart.Vel[0][j] * NewPart.Vel[0][j] + … ; // additional load

// (unnecessary): why does the compiler not reuse it from the register?

}

SC15 MIC Tuning BoF
5

Results
 Original vector efficiency: 36%, Advisor estimates a gain of 1.4x (host system: Xeon IVB node,

using AVX)

 Optimising data loading: number of loads decreases, estimated efficiency goes to 42%

 Solution to problem 1:

 “if” statement moved inside one of the inlined functions, resulting in a much more localised masking and

reduced overhead.

 Advisor efficiency now > 90% on IVB, although the measured speed-up on the loop is ~ 2.3x.

 On a HSW node, using AVX2: both Advisor estimate and measure match better, speed-up ~ 3.0x.

 Irregular strided access: problem 2 is the remaining hotspot in our case

 In the Gadget kernel under consideration, the time spent in vector loops is small

 Overall gain in performance is ~ 1.1x both on Xeon and on KNC.

 However: useful lessons to be learnt in view of backporting, applicable to several similar loops in Gadget.

 More todo: analysis of inlined functions (Advisor 2016 Upgrade 1), and work on data alignment

SC15 MIC Tuning BoF
6

Optimised pseudocode

for (n = 0, n < neighbouring particles (selected)) {

j = ngblist[n]; // getting the index from the particle data structure (SoA)

inlined_function1(…..); // the if condition is moved inside the function

inlined_function2(…..);

vel1 = NewPart.Vel[0][j]; // still strided data access: next exposed hotspot

…

vx += vel1; // optimised data load

…

v2 += vel1 * vel1 + … ;

}

SC15 MIC Tuning BoF
7

Backup – additional analysis

 Analysis in collaboration with G. Zitzlsberger and Z. Matveev (Intel)

 Performance of the considered loop on IVB vs. HSW: in the latter, one can

greatly benefit from AVX2 ISA

 Thus, simplified code generation and FMAs -> better performance even in the

scalar version

 This results also in better Advisor “gain estimate” prediction on HSW

 Inlined functions: analysis available on Advisor 2016 Upgrade 1

