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Abstract
Hardware and software advances in DSP, GPU, MIC, ARM and FPGA 
technologies have accelerated the need for a common many-threaded 
model for these accelerators.  The OpenMP Language Committee has 
also accelerated its pace and is finalizing features for the 4.1 release that 
will provide a common threading model for many-core technologies.
Insights into some of the design decisions that went into the OpenMP 
accelerator model will be presented. Also, a preview of the OpenMP 
accelerator sub-committee's future releases for the OpenMP specificatio
will be outlined and discussed.
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WHY ME?
Why Texas Instruments?
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High Performance Embedded Computing
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Keystone I: C6678 SoC
• Eight 8 C66x cores
• Each with 32k L1P, 32k 

L1D, 512k L2
• 1 to 1.25 GHz
• 320 GMACS 
• 160 SP GFLOPS
• 512 KB/Core of local L2
• 4MB Multicore Shared 

Memory (MSMC)
• Multicore Navigator (8k 

HW queues) and 
TeraNet

• Serial-RapidIO, PCIe-II, 
Ethernet, 1xHyperlink
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Energy Efficiency
LINPACK running on C6678 achieves 25.6 Gflops, ~2.1 Gflops/W

PRACE First Implementation Project, Grant RI-261557, Final Report on Prototypes Evaluation. Lennart 
Johnsson, Gilbert Netzer, SNIC/KTH, 3/29/2013.
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High Density COTS boards
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Keystone II: 66AK2H12/06 SoC

40mm x 40mm package

Multicore NavigatorMulticore Navigator28 nm

Te
ra

N
et

MSMC  6MBMSMC  6MB
Network

AccelerationPacs

System ElementsSystem Elements

Power Mgr

Packet
Accelerator

5 port  1GbE Switch

EMIF and  I/OEMIF and  I/O

64/72b 
DDR3

x2

16b
EMIF

UART
x2

SPI
x3

I2C
x3

High Speed SERDES

1GbESRIO HyperLink
x2

4
x

4
x

8
x

PCIe

2
x

Security
Accelerator

SysMon

Debug EDMA

• 4x/8x  66x DSP cores up to 1.4GHz
• 2x/4x Cotex ARM A15
• 1MB of local L2 cache RAM per C66 DSP core
• 4MB shared across all ARM

C66x Fixed or Floating Point 
DSP

• Multicore Shared Memory Controller provides low 
latency & high bandwidth memory access

• 6MB Shared L2 on-chip
• 2 x 72 bit DDR3, 72-bit (with ECC), 10GB total 

addressable, DIMM support (4 ranks total)

Large on chip and off chip 
memory

• Multicore Navigator, TeraNet, HyperLink
• 1GbE Network coprocessor (IPv4/IPv6)
• Crypto Engine (IPSec, SRTP)

KeyStone multicore architecture 
and acceleration

• 4 Port 1G Layer 2 Ethernet Switch
• 2x PCIe, 1x4 SRIO 2.1, EMIF16, USB 3.0 UARTx2, 

SPI, I2C
• 15-25W depending upon DSP cores, speed, temp & 

other factors
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Available HPC Platforms
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“As a partner in HP’s Moonshot ecosystem 
dedicated to the rapid development of new 
Moonshot servers, we believe TI’s KeyStone
design will provide new capabilities across 
multiple disciplines to accelerate the pace of 
telecommunication innovations and 
geological exploration.”

--- Paul Santeler, vice president and 
general manager, Hyperscale Business, HP

HP Moonshot

“The BrownDwarf Y-Class system is an incredibly important milestone in HPC 
system development. Working in close collaboration with TI, IDT and our hardware 
partner Prodrive, we have successfully established a new class of energy efficient 
supercomputers designed to fulfill the demands of a wide range of scientific, 
technical and commercial applications. We are very excited to be launching the 
most capable energy efficient supercomputer available. The innovative design of 
the BrownDwarf Y-Class system has resulted in a network fabric that far exceeds 
the latency and power efficiencies of traditional supercomputing systems based on 
x86 and Infiniband or Ethernet systems. By utilizing existing programming models 
and toolsets, the BrownDwarf Y-Class supercomputer is a disruptive force in HPC 
as it leapfrogs a number of the supercomputing incumbents.”

-- Ian Lintault, Managing Director, nCore HPC

nCore BrownDwarf



Heterogeneous Multicore Programming
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A15 A15 A15 A15

OpenMP/MPI

DSPs

OpenCL/OpenMP 4.0

Node 0

MPI (Message Passing Interface)
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Node 1
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OpenMP/MPI

DSPs

OpenCL/OpenMP 4.0

Node N

 Within a node, OpenCL™ or OpenMP® 4.0 can be used to program heterogeneous compute 
cores

 Across nodes, MPI is used to partition the application and manage program execution, data 
transfer and synchronization



ARM + OpenCL DSP Acceleration
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OpenMP

Data parallel
- A kernel is enqueued
- OpenCL divides into N workgroups
- Each workgroup is assigned a core
- After all workgroups finish a new kernel can be 
dispatched

Task parallel
- A task is enqueued
- OpenCL dispatches tasks to cores
- OpenCL can accept and dispatch more tasks 
asynchronously

OpenCL + OpenMP regions
- A task is enqueued
- OpenCL dispatches the task to DSP 0
- Tasks can use additional DSP cores by 
entering OpenMP regions
- A task completes before another task is 
dispatched
- Note: This is a TI extension

Example use
- Want to call existing OpenMP based DSP code 
from the ARM



ARM 0
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// OpenMP Accelerator vector add
// OpenMP for loop parallelization
void ompVectorAdd(int   N, 
                  float *a,
                  float *b,
                  float *c)
{
  #pragma omp target           \
  map(to:   N, a[0:N], b[0:N]) \ 
  map(from: c[0:N])
  {
    int i;
    #pragma omp parallel for
    for (i = 0; i < N; i++)
      c[i] = a[i] + b[i];
  }
}

Data movement
- to copies variables from the ARM memory to 
the DSP memory
- from copies variables from the DSP memory 
to the ARM memory
- TI provides special alloc and free functions 
to allocate DSP memory such that copies are not 
needed

Calling existing DSP code from the ARM
- Wrapping existing DSP functions with OpenMP 
Accelerator code is straightforward

ARM + OpenMP 4.0



OPENMP 4.0
Support for Heterogeneous Compute Nodes
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What is OpenMP?

• De-facto standard Application Programming Interface (API) 
to write shared memory parallel applications in C, C++, and 
Fortran

• Consists of Compiler Directives, Runtime routines and 
Environment variables

• Specification maintained by the OpenMP 
Architecture Review Board (http://www.openmp.org)

• New ARB mission statement:
“The OpenMP ARB mission is to standardize directive-based 
multi-language high-level parallelism that is performant, 
productive and portable.”

• Version 4.0 has been released July 2013



15

OpenMP is widely supported by 
the industry, as well as the 

academic community



New in OpenMP 4.0
• Support for accelerators (or heterogeneous devices)
• Thread affinity support
• SIMD support for vectorization
• Thread cancellation
• Fortran 2003 support
• Extended support for

– Tasking (groups, dependencies, abort)
– Reductions (i.e. User Defined Reductions)
– Atomics (sequential consistency)



Heterogeneous Device model
• OpenMP 4.0 supports accelerators/coprocessors
• Device model:

– One host
– Multiple accelerators/coprocessors of the same kind

Heterogeneous SoC



Terminology
• Device:

an implementation-defined (logical) execution unit
• Mapped variable:

An original variable in a (host) data environment with a corresponding 
variable in a device data environment

• Mappable type:
A type that is amenable for mapped variables.
(Bitwise copyable plus additional restrictions.)

• Device data environment:
Data environment as defined by target data or target constructs

The execution model is host-centric such that the host device offloads 
target regions to target devices.



OpenMP 4.0 Device Constructs
• Execute code on a target device

– omp target [clause[[,] clause],…]
structured-block

– omp declare target
[function-definitions-or-declarations]

• Map variables to a target device
– map ([map-type:] list) // map clause

map-type := alloc | tofrom | to | from
– omp target data [clause[[,] clause],…] 
structured-block

– omp target update [clause[[,] clause],…]
– omp declare target

[variable-definitions-or-declarations]

• Workshare for acceleration
– omp teams [clause[[,] clause],…] 

structured-block
– omp distribute [clause[[,] clause],…] 

for-loops
19



Device Runtime Support

• Runtime support routines
– void omp_set_default_device(int dev_num )
– int omp_get_default_device(void)
– int omp_get_num_devices(void);
– int omp_get_num_teams(void)
– int omp_get_team_num(void);
– Int omp_is_initial_device(void);

• Environment variable
– Control default device through OMP_DEFAULT_DEVICE
– Accepts a non-negative integer value



target Construct Example

• Use target construct to
– Transfer control from the host to the device
– Establish a device data environment (if not yet done)

• Host thread waits until offloaded region completed
– Use other OpenMP constructs for asynchronicity

#pragma omp target map(to:b[0:count]) map(to:c,d) map(from:a[0:count])
{

#pragma omp parallel for
for (i=0; i<count; i++) {

a[i] = b[i] * c + d;
}

}

host
target

host



extern void init(float*, float*, int);
extern void init_again(float*, float*, int);
extern void output(float*, int);

void vec_mult(float *p, float *v1, float *v2, int N)
{

int i;

init(v1, v2, N);

#pragma omp target data map(from: p[0:N])
{

#pragma omp target map(to: v1[:N], v2[:N])
#pragma omp parallel for 
for (i=0; i<N; i++)

p[i] = v1[i] * v2[i];

init_again(v1, v2, N);

#pragma omp target map(to: v1[:N], v2[:N])
#pragma omp parallel for
for (i=0; i<N; i++)

p[i] = p[i] + (v1[i] * v2[i]);
}

output(p, N);
}

target data Construct Example
• The target data construct 

creates a device data 
environment and encloses 
target regions, which have 
their own device data 
environments.  

• The device data environment 
of the target data region is 
inherited by the device data 
environment of an enclosed 
target region. 

• The target data construct 
is used to create variables that 
will persist throughout the 
target data region.

• v1 and v2 are mapped at each 
target construct.  

• Instead of mapping the 
variable p twice, once at each 
target construct, p is 
mapped once by the target 
data construct. 
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Data mapping: shared or distributed memory
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• The corresponding variable in the 
device data environment may share 
storage with the original variable.

• Writes to the corresponding variable 
may alter the value of the original 
variable.



Terminology

• League:
the set of threads teams created by a teams construct

• Contention group:
threads of a team in a league and their descendant threads

The teams construct creates a league of thread teams where the master 
thread of each team executes the region.



teams and distribute Constructs Example
int main(int argc, const char* argv[]) {

float *x = (float*) malloc(n * sizeof(float)); 
float *y = (float*) malloc(n * sizeof(float)); 
// Define scalars n, a, b & initialize x, y

#pragma omp target data map(to:x[0:n])
{
#pragma omp target map(tofrom:y)
#pragma omp teams num_teams(num_blocks) thread_limit(bsize)

#pragma omp distribute
for (int i = 0; i < n; i += num_blocks){

#pragma omp parallel for
for (int j = i; j < i + num_blocks; j++) {

y[j] = a*x[j] + y[j];
} }

} free(x); free(y); return 0; }

all do the same

workshare (w/o barrier)

workshare (w/ barrier)



distribute parallel for Construct Example

• SAXPY: Combined Constructs

int main(int argc, const char* argv[]) {
float *x = (float*) malloc(n * sizeof(float)); 
float *y = (float*) malloc(n * sizeof(float)); 
// Define scalars n, a, b & initialize x, y

#pragma omp target map(to:x[0:n]) map(tofrom:y)
{

#pragma omp teams num_teams(num_blocks) thread_limit(bsize)
#pragma omp distribute parallel for

for (int i = 0; i < n; ++i){
y[i] = a*x[i] + y[i];

}
}

free(x); free(y); return 0; 
}



OpenMP 4.0 Capabilities
Feature OpenACC OpenMP 

4.0
Support for C and C++, Fortran ✔ ✔
Support single code base of hetero-machine ✔ ✔
Overlap communication and computation ✔ ✔
Interoperate with MPI ✔ ✔
Interoperate with OpenMP ✔
Offload to GPU ✔ ✔
Offload to Intel Xeon Phi Coprocessor ✔
Ability to support all accelerators ✔
Ability to support all GPUs ✔
Ability to support all co-processors ✔
Support for nested parallelism ✔
User-managed memory consistency ✔ ✔
Multiple vendor support ✔ ✔
Support for dynamic dispatch ✔
Parallel on/off separate from offload ✔
Intel compiler support 2013
Broad standards body approval ✔



OPENMP 4.1 AND BEYOND
What are we working on in the OpenMP accelerator sub-
committee?



Plan for OpenMP specifications

• OpenMP Tools Interface Technical Report
– Released in March 2014
– Working towards adoption in 5.0 (maybe 4.1)

• OpenMP 4.1 Technical Report
– Changes adopted in time frame of SC14
– Major focus will be device construct refinements
– Provide clear guidance to begin 4.1 implementations

• OpenMP 4.1
– Clarifications, refinements and minor extensions to existing specification
– Do not break existing code
– Minimal implementation burden beyond 4.0
– Targeting release for SC15

• OpenMP 5.0
– Address several major open issues for OpenMP
– Expect less significant advance than 4.0 from 3.1/3.0 
– Do not break existing code unnecessarily
– Targeting release for SC17 (somewhat ambitious)



• Refinements of combined clauses
– Addition of even more combined constructs
– Specifying overlapping clauses on combined constructs

• Asynchronous execution of target regions
• Unstructured data mapping
• Link clause/linkable support
• Multiple device types
• Deep copy/map/serialization for map
• Update for map even if present
• Providing device-specific environment variables

Refinements to device constructs are the 
most significant 4.1 plans



Want to learn more?
• Attend our advanced OpenMP programming tutorial at SC’14
• Attend IWOMP’14 in Salvador, Brazil, Sept. 2014.
• Join the ARB!
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BACKUP
Never enough time…
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Tooling for 66AK2H

Programming Heterogeneous Multicore Embedded SoCs
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• A node is a 66AK2H SoC
• OpenMP Accelerator model or OpenCL for offloading computation from ARMs to DSPs on a single  node
• MPI on ARM to communicate across nodes (multiple transports supported)
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+ 
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DSP Multicore 
Libraries

FFT, BLAS, libFlame

ARM MPCore (4 Cortex‐A15) C66x DSPs (8)Navigator/Shared Memory

66AK2H SoC

GCC
(OpenMP)MPI

ARM hosted 
DSP tools & 

debug

OpenMP Accelerator Model

Ethernet

SRIO

Hyperlink



target Construct

• Transfer control from the host to the device
• Syntax (C/C++)
#pragma omp target [clause[[,] clause],…] 
structured-block

• Syntax (Fortran)
!$omp target [clause[[,] clause],…] 
structured-block
!$omp end target

• Clauses
device(scalar-integer-expression)         
map(alloc | to | from | tofrom: list)  
if(scalar-expr)



target declare Construct

• Declare one or more functions to also be compiled
for the target device

• Syntax (C/C++):
#pragma omp declare target

[function-definitions-or-declarations]
#pragma omp end declare target

• Syntax (Fortran):
!$omp declare target [(proc-name-list | list)]



target data Construct

• Create a device data environment 
• Syntax (C/C++)
#pragma omp target data [clause[[,] 
clause],…] 
structured-block

• Syntax (Fortran)
!$omp target data [clause[[,] clause],…] 
structured-block
!$omp end target data

• Clauses
device(scalar-integer-expression)         
map(alloc | to | from | tofrom: list)  
if(scalar-expr)



target update Construct
• Issue data transfers between host and devices
• Syntax (C/C++)
#pragma omp target update [clause[[,] 
clause],…] 

• Syntax (Fortran)
!$omp target update [clause[[,] clause],…] 

• Clauses
device(scalar-integer-expression)         
to(list)
from(list)
if(scalar-expr)



teams Construct

• Syntax (C/C++):
#pragma omp teams [clause[[,] clause],…] 
structured-block

• Syntax (Fortran):
!$omp teams [clause[[,] clause],…] 
structured-block

• Clauses
num_teams(integer-expression)
thread_limit(integer-expression)
default(shared | none)
private(list), firstprivate(list)
shared(list), reduction(operator : list)



distribute Construct

• Syntax (C/C++):
#pragma omp distribute [clause[[,] 
clause],…] 
for-loops

• Syntax (Fortran):
!$omp teams [clause[[,] clause],…] 
do-loops

• Clauses
private(list)
firstprivate(list)
collapse(n)
dist_schedule(kind[, chunk_size])



if Clause Example
• The if clause on the 
target construct indicates 
that if the variable N is 
smaller than a given 
threshold, then the target
region will be executed by 
the host device. 

• The if clause on the 
parallel construct 
indicates that if the variable 
N is smaller than a second 
threshold then the parallel 
region is inactive.
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#define THRESHOLD1 1000000
#define THRESHOLD2 1000

extern void init(float*, float*, int);
extern void output(float*, int);

void vec_mult(float *p, float *v1, float *v2, int N)
{

int i;
init(v1, v2, N);

#pragma omp target if(N>THRESHOLD1) \\
map(to: v1[0:N], v2[:N]) map(from: p[0:N])

#pragma omp parallel for if(N>THRESHOLD2)
for (i=0; i<N; i++)

p[i] = v1[i] * v2[i];
output(p, N);

}



Asynchronous Offloading

• Use existing OpenMP features to implement asynchronous offloads.

#pragma omp parallel sections
{
#pragma omp task

{
#pragma omp target map(to:input[:N]) map(from:result[:N])
#pragma omp parallel for

for (i=0; i<N; i++) {
result[i] = some_computation(input[i], i);

}
}

#pragma omp task
{

do_something_important_on_host();
}

#pragma omp taskwait
}

host
target

host



device Clause Example

int num_dev = omp_get_num_devices();
int chunksz = length / num_dev;
assert((length % num_dev) == 0);
#pragma omp parallel sections firstprivate(chunksz,num_dev)
{

for (int dev = 0; dev < NUM_DEVICES; dev++) {
#pragma omp task firstprivate(dev)

{
int lb = dev * chunksz;
int ub = (dev+1) * chunksz;

#pragma omp target device(dev) map(in:y[lb:chunksz]) map(out:x[lb:chunksz])
{

#pragma omp parallel for
for (int i = lb; i < ub; i++) {

x[i] = a * y[i];
}

}
}

}
}

hhost
target
target
target
target



Target update Construct Example

#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)
{

#pragma omp target device(0) 
#pragma omp parallel for

for (i=0; i<N; i++)
tmp[i] = some_computation(input[i], i);

update_input_array_on_the_host(input);

#pragma omp target update device(0) to(input[:N])

#pragma omp target device(0) 
#pragma omp parallel for reduction(+:res)

for (i=0; i<N; i++)
res += final_computation(input[i], tmp[i], i)

}

host
target

host
target

host



map Clause
• The target construct 

creates a new device data 
environment and explicitly 
maps the array sections 
v1[0:N], v2[:N] and p[0:N] to 
the new device data 
environment.  

• The variable N implicitly 
mapped into the new device 
data environment from the 
encountering task's data 
environment.
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extern void init(float*, float*, int);
extern void output(float*, int);

void vec_mult(float *p, float *v1, float *v2, int N)
{

int i;
init(v1, v2, N);

#pragma omp target map(to:v1[0:N],v2[:N]) \\
map(from:p[0:N])

#pragma omp parallel for
for (i=0; i<N; i++)

p[i] = v1[i] * v2[i];

output(p, N);
}

Map-types:
• alloc: allocate storage for corresponding variable
• to: alloc and assign value of original variable to corresponding variable on entry
• from: alloc and assign value of corresponding variable to original variable on exit
• tofrom: default, both to and form


