
OpenMP 4.0 Acceleration

TACC IXPUG14
Austin, TX
Eric Stotzer, Ph.D.

1

Abstract
Hardware and software advances in DSP, GPU, MIC, ARM and FPGA
technologies have accelerated the need for a common many-threaded
model for these accelerators. The OpenMP Language Committee has
also accelerated its pace and is finalizing features for the 4.1 release that
will provide a common threading model for many-core technologies.
Insights into some of the design decisions that went into the OpenMP
accelerator model will be presented. Also, a preview of the OpenMP
accelerator sub-committee's future releases for the OpenMP specificatio
will be outlined and discussed.

2

WHY ME?
Why Texas Instruments?

3

High Performance Embedded Computing

4

Keystone I: C6678 SoC
• Eight 8 C66x cores
• Each with 32k L1P, 32k

L1D, 512k L2
• 1 to 1.25 GHz
• 320 GMACS
• 160 SP GFLOPS
• 512 KB/Core of local L2
• 4MB Multicore Shared

Memory (MSMC)
• Multicore Navigator (8k

HW queues) and
TeraNet

• Serial-RapidIO, PCIe-II,
Ethernet, 1xHyperlink

5

Energy Efficiency
LINPACK running on C6678 achieves 25.6 Gflops, ~2.1 Gflops/W

PRACE First Implementation Project, Grant RI-261557, Final Report on Prototypes Evaluation. Lennart
Johnsson, Gilbert Netzer, SNIC/KTH, 3/29/2013.

6

High Density COTS boards

7

Keystone II: 66AK2H12/06 SoC

40mm x 40mm package

Multicore NavigatorMulticore Navigator28 nm

Te
ra

N
et

MSMC 6MBMSMC 6MB
Network

AccelerationPacs

System ElementsSystem Elements

Power Mgr

Packet
Accelerator

5 port 1GbE Switch

EMIF and I/OEMIF and I/O

64/72b
DDR3

x2

16b
EMIF

UART
x2

SPI
x3

I2C
x3

High Speed SERDES

1GbESRIO HyperLink
x2

4
x

4
x

8
x

PCIe

2
x

Security
Accelerator

SysMon

Debug EDMA

• 4x/8x 66x DSP cores up to 1.4GHz
• 2x/4x Cotex ARM A15
• 1MB of local L2 cache RAM per C66 DSP core
• 4MB shared across all ARM

C66x Fixed or Floating Point
DSP

• Multicore Shared Memory Controller provides low
latency & high bandwidth memory access

• 6MB Shared L2 on-chip
• 2 x 72 bit DDR3, 72-bit (with ECC), 10GB total

addressable, DIMM support (4 ranks total)

Large on chip and off chip
memory

• Multicore Navigator, TeraNet, HyperLink
• 1GbE Network coprocessor (IPv4/IPv6)
• Crypto Engine (IPSec, SRTP)

KeyStone multicore architecture
and acceleration

• 4 Port 1G Layer 2 Ethernet Switch
• 2x PCIe, 1x4 SRIO 2.1, EMIF16, USB 3.0 UARTx2,

SPI, I2C
• 15-25W depending upon DSP cores, speed, temp &

other factors

Peripherals

66x66x 66x66x66x66x66x66x

1MB1MB 1MB1MB 1MB1MB 1MB1MB

ARM
A15
ARM
A15

ARM
A15
ARM
A15

ARM
A15
ARM
A15

ARM
A15
ARM
A15

4MB4MB

66x66x 66x66x66x66x66x66x

1MB1MB 1MB1MB 1MB1MB 1MB1MB

USB3

8

Available HPC Platforms

9

“As a partner in HP’s Moonshot ecosystem
dedicated to the rapid development of new
Moonshot servers, we believe TI’s KeyStone
design will provide new capabilities across
multiple disciplines to accelerate the pace of
telecommunication innovations and
geological exploration.”

--- Paul Santeler, vice president and
general manager, Hyperscale Business, HP

HP Moonshot

“The BrownDwarf Y-Class system is an incredibly important milestone in HPC
system development. Working in close collaboration with TI, IDT and our hardware
partner Prodrive, we have successfully established a new class of energy efficient
supercomputers designed to fulfill the demands of a wide range of scientific,
technical and commercial applications. We are very excited to be launching the
most capable energy efficient supercomputer available. The innovative design of
the BrownDwarf Y-Class system has resulted in a network fabric that far exceeds
the latency and power efficiencies of traditional supercomputing systems based on
x86 and Infiniband or Ethernet systems. By utilizing existing programming models
and toolsets, the BrownDwarf Y-Class supercomputer is a disruptive force in HPC
as it leapfrogs a number of the supercomputing incumbents.”

-- Ian Lintault, Managing Director, nCore HPC

nCore BrownDwarf

Heterogeneous Multicore Programming

10

A15 A15 A15 A15

OpenMP/MPI

DSPs

OpenCL/OpenMP 4.0

Node 0

MPI (Message Passing Interface)

A15 A15 A15 A15

OpenMP/MPI

DSPs

OpenCL/OpenMP 4.0

Node 1

A15 A15 A15 A15

OpenMP/MPI

DSPs

OpenCL/OpenMP 4.0

Node N

 Within a node, OpenCL™ or OpenMP® 4.0 can be used to program heterogeneous compute
cores

 Across nodes, MPI is used to partition the application and manage program execution, data
transfer and synchronization

ARM + OpenCL DSP Acceleration

ARM 0

DSP
0

DSP
1

DSP
2

DSP
3

DSP
4

DSP
5

DSP
6

DSP
7

ARM 1 ARM 2 ARM 3

DSP subsystem

ARM subsystem
TI 66AK2H12

OpenCL

OpenMP

ARM 0

DSP
0

DSP
1

DSP
2

DSP
3

DSP
4

DSP
5

DSP
6

DSP
7

ARM 1 ARM 2 ARM 3

DSP subsystem

ARM subsystem
TI 66AK2H12

OpenCL

OpenMP

OpenMP

Data parallel
- A kernel is enqueued
- OpenCL divides into N workgroups
- Each workgroup is assigned a core
- After all workgroups finish a new kernel can be
dispatched

Task parallel
- A task is enqueued
- OpenCL dispatches tasks to cores
- OpenCL can accept and dispatch more tasks
asynchronously

OpenCL + OpenMP regions
- A task is enqueued
- OpenCL dispatches the task to DSP 0
- Tasks can use additional DSP cores by
entering OpenMP regions
- A task completes before another task is
dispatched
- Note: This is a TI extension

Example use
- Want to call existing OpenMP based DSP code
from the ARM

ARM 0

DSP
0

DSP
1

DSP
2

DSP
3

DSP
4

DSP
5

DSP
6

DSP
7

ARM 1 ARM 2 ARM 3

DSP subsystem

ARM subsystem
TI 66AK2H12

OpenMP Accelerator

OpenMP

OpenMP

// OpenMP Accelerator vector add
// OpenMP for loop parallelization
void ompVectorAdd(int N,
 float *a,
 float *b,
 float *c)
{
 #pragma omp target \
 map(to: N, a[0:N], b[0:N]) \
 map(from: c[0:N])
 {
 int i;
 #pragma omp parallel for
 for (i = 0; i < N; i++)
 c[i] = a[i] + b[i];
 }
}

Data movement
- to copies variables from the ARM memory to
the DSP memory
- from copies variables from the DSP memory
to the ARM memory
- TI provides special alloc and free functions
to allocate DSP memory such that copies are not
needed

Calling existing DSP code from the ARM
- Wrapping existing DSP functions with OpenMP
Accelerator code is straightforward

ARM + OpenMP 4.0

OPENMP 4.0
Support for Heterogeneous Compute Nodes

13

What is OpenMP?

• De-facto standard Application Programming Interface (API)
to write shared memory parallel applications in C, C++, and
Fortran

• Consists of Compiler Directives, Runtime routines and
Environment variables

• Specification maintained by the OpenMP
Architecture Review Board (http://www.openmp.org)

• New ARB mission statement:
“The OpenMP ARB mission is to standardize directive-based
multi-language high-level parallelism that is performant,
productive and portable.”

• Version 4.0 has been released July 2013

15

OpenMP is widely supported by
the industry, as well as the

academic community

New in OpenMP 4.0
• Support for accelerators (or heterogeneous devices)
• Thread affinity support
• SIMD support for vectorization
• Thread cancellation
• Fortran 2003 support
• Extended support for

– Tasking (groups, dependencies, abort)
– Reductions (i.e. User Defined Reductions)
– Atomics (sequential consistency)

Heterogeneous Device model
• OpenMP 4.0 supports accelerators/coprocessors
• Device model:

– One host
– Multiple accelerators/coprocessors of the same kind

Heterogeneous SoC

Terminology
• Device:

an implementation-defined (logical) execution unit
• Mapped variable:

An original variable in a (host) data environment with a corresponding
variable in a device data environment

• Mappable type:
A type that is amenable for mapped variables.
(Bitwise copyable plus additional restrictions.)

• Device data environment:
Data environment as defined by target data or target constructs

The execution model is host-centric such that the host device offloads
target regions to target devices.

OpenMP 4.0 Device Constructs
• Execute code on a target device

– omp target [clause[[,] clause],…]
structured-block

– omp declare target
[function-definitions-or-declarations]

• Map variables to a target device
– map ([map-type:] list) // map clause

map-type := alloc | tofrom | to | from
– omp target data [clause[[,] clause],…]
structured-block

– omp target update [clause[[,] clause],…]
– omp declare target

[variable-definitions-or-declarations]

• Workshare for acceleration
– omp teams [clause[[,] clause],…]

structured-block
– omp distribute [clause[[,] clause],…]

for-loops
19

Device Runtime Support

• Runtime support routines
– void omp_set_default_device(int dev_num)
– int omp_get_default_device(void)
– int omp_get_num_devices(void);
– int omp_get_num_teams(void)
– int omp_get_team_num(void);
– Int omp_is_initial_device(void);

• Environment variable
– Control default device through OMP_DEFAULT_DEVICE
– Accepts a non-negative integer value

target Construct Example

• Use target construct to
– Transfer control from the host to the device
– Establish a device data environment (if not yet done)

• Host thread waits until offloaded region completed
– Use other OpenMP constructs for asynchronicity

#pragma omp target map(to:b[0:count]) map(to:c,d) map(from:a[0:count])
{

#pragma omp parallel for
for (i=0; i<count; i++) {

a[i] = b[i] * c + d;
}

}

host
target

host

extern void init(float*, float*, int);
extern void init_again(float*, float*, int);
extern void output(float*, int);

void vec_mult(float *p, float *v1, float *v2, int N)
{

int i;

init(v1, v2, N);

#pragma omp target data map(from: p[0:N])
{

#pragma omp target map(to: v1[:N], v2[:N])
#pragma omp parallel for
for (i=0; i<N; i++)

p[i] = v1[i] * v2[i];

init_again(v1, v2, N);

#pragma omp target map(to: v1[:N], v2[:N])
#pragma omp parallel for
for (i=0; i<N; i++)

p[i] = p[i] + (v1[i] * v2[i]);
}

output(p, N);
}

target data Construct Example
• The target data construct

creates a device data
environment and encloses
target regions, which have
their own device data
environments.

• The device data environment
of the target data region is
inherited by the device data
environment of an enclosed
target region.

• The target data construct
is used to create variables that
will persist throughout the
target data region.

• v1 and v2 are mapped at each
target construct.

• Instead of mapping the
variable p twice, once at each
target construct, p is
mapped once by the target
data construct.

22

Data mapping: shared or distributed memory

A

Memory

Processor
Y

Cache

A

Processor
X

Cache

A

A

Memory X
Accelertor

Y

A

Memory Y
Processor

X

Cache

A

Shared memory

Distributed memory

• The corresponding variable in the
device data environment may share
storage with the original variable.

• Writes to the corresponding variable
may alter the value of the original
variable.

Terminology

• League:
the set of threads teams created by a teams construct

• Contention group:
threads of a team in a league and their descendant threads

The teams construct creates a league of thread teams where the master
thread of each team executes the region.

teams and distribute Constructs Example
int main(int argc, const char* argv[]) {

float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float));
// Define scalars n, a, b & initialize x, y

#pragma omp target data map(to:x[0:n])
{
#pragma omp target map(tofrom:y)
#pragma omp teams num_teams(num_blocks) thread_limit(bsize)

#pragma omp distribute
for (int i = 0; i < n; i += num_blocks){

#pragma omp parallel for
for (int j = i; j < i + num_blocks; j++) {

y[j] = a*x[j] + y[j];
} }

} free(x); free(y); return 0; }

all do the same

workshare (w/o barrier)

workshare (w/ barrier)

distribute parallel for Construct Example

• SAXPY: Combined Constructs

int main(int argc, const char* argv[]) {
float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float));
// Define scalars n, a, b & initialize x, y

#pragma omp target map(to:x[0:n]) map(tofrom:y)
{

#pragma omp teams num_teams(num_blocks) thread_limit(bsize)
#pragma omp distribute parallel for

for (int i = 0; i < n; ++i){
y[i] = a*x[i] + y[i];

}
}

free(x); free(y); return 0;
}

OpenMP 4.0 Capabilities
Feature OpenACC OpenMP

4.0
Support for C and C++, Fortran ✔ ✔
Support single code base of hetero-machine ✔ ✔
Overlap communication and computation ✔ ✔
Interoperate with MPI ✔ ✔
Interoperate with OpenMP ✔
Offload to GPU ✔ ✔
Offload to Intel Xeon Phi Coprocessor ✔
Ability to support all accelerators ✔
Ability to support all GPUs ✔
Ability to support all co-processors ✔
Support for nested parallelism ✔
User-managed memory consistency ✔ ✔
Multiple vendor support ✔ ✔
Support for dynamic dispatch ✔
Parallel on/off separate from offload ✔
Intel compiler support 2013
Broad standards body approval ✔

OPENMP 4.1 AND BEYOND
What are we working on in the OpenMP accelerator sub-
committee?

Plan for OpenMP specifications

• OpenMP Tools Interface Technical Report
– Released in March 2014
– Working towards adoption in 5.0 (maybe 4.1)

• OpenMP 4.1 Technical Report
– Changes adopted in time frame of SC14
– Major focus will be device construct refinements
– Provide clear guidance to begin 4.1 implementations

• OpenMP 4.1
– Clarifications, refinements and minor extensions to existing specification
– Do not break existing code
– Minimal implementation burden beyond 4.0
– Targeting release for SC15

• OpenMP 5.0
– Address several major open issues for OpenMP
– Expect less significant advance than 4.0 from 3.1/3.0
– Do not break existing code unnecessarily
– Targeting release for SC17 (somewhat ambitious)

• Refinements of combined clauses
– Addition of even more combined constructs
– Specifying overlapping clauses on combined constructs

• Asynchronous execution of target regions
• Unstructured data mapping
• Link clause/linkable support
• Multiple device types
• Deep copy/map/serialization for map
• Update for map even if present
• Providing device-specific environment variables

Refinements to device constructs are the
most significant 4.1 plans

Want to learn more?
• Attend our advanced OpenMP programming tutorial at SC’14
• Attend IWOMP’14 in Salvador, Brazil, Sept. 2014.
• Join the ARB!

31

BACKUP
Never enough time…

32

Tooling for 66AK2H

Programming Heterogeneous Multicore Embedded SoCs

33

• A node is a 66AK2H SoC
• OpenMP Accelerator model or OpenCL for offloading computation from ARMs to DSPs on a single node
• MPI on ARM to communicate across nodes (multiple transports supported)

OpenCL

SMP Linux

OpenCL
+

OpenMP
Runtimes

DSP Multicore
Libraries

FFT, BLAS, libFlame

ARM MPCore (4 Cortex‐A15) C66x DSPs (8)Navigator/Shared Memory

66AK2H SoC

GCC
(OpenMP)MPI

ARM hosted
DSP tools &

debug

OpenMP Accelerator Model

Ethernet

SRIO

Hyperlink

target Construct

• Transfer control from the host to the device
• Syntax (C/C++)
#pragma omp target [clause[[,] clause],…]
structured-block

• Syntax (Fortran)
!$omp target [clause[[,] clause],…]
structured-block
!$omp end target

• Clauses
device(scalar-integer-expression)
map(alloc | to | from | tofrom: list)
if(scalar-expr)

target declare Construct

• Declare one or more functions to also be compiled
for the target device

• Syntax (C/C++):
#pragma omp declare target

[function-definitions-or-declarations]
#pragma omp end declare target

• Syntax (Fortran):
!$omp declare target [(proc-name-list | list)]

target data Construct

• Create a device data environment
• Syntax (C/C++)
#pragma omp target data [clause[[,]
clause],…]
structured-block

• Syntax (Fortran)
!$omp target data [clause[[,] clause],…]
structured-block
!$omp end target data

• Clauses
device(scalar-integer-expression)
map(alloc | to | from | tofrom: list)
if(scalar-expr)

target update Construct
• Issue data transfers between host and devices
• Syntax (C/C++)
#pragma omp target update [clause[[,]
clause],…]

• Syntax (Fortran)
!$omp target update [clause[[,] clause],…]

• Clauses
device(scalar-integer-expression)
to(list)
from(list)
if(scalar-expr)

teams Construct

• Syntax (C/C++):
#pragma omp teams [clause[[,] clause],…]
structured-block

• Syntax (Fortran):
!$omp teams [clause[[,] clause],…]
structured-block

• Clauses
num_teams(integer-expression)
thread_limit(integer-expression)
default(shared | none)
private(list), firstprivate(list)
shared(list), reduction(operator : list)

distribute Construct

• Syntax (C/C++):
#pragma omp distribute [clause[[,]
clause],…]
for-loops

• Syntax (Fortran):
!$omp teams [clause[[,] clause],…]
do-loops

• Clauses
private(list)
firstprivate(list)
collapse(n)
dist_schedule(kind[, chunk_size])

if Clause Example
• The if clause on the
target construct indicates
that if the variable N is
smaller than a given
threshold, then the target
region will be executed by
the host device.

• The if clause on the
parallel construct
indicates that if the variable
N is smaller than a second
threshold then the parallel
region is inactive.

40

#define THRESHOLD1 1000000
#define THRESHOLD2 1000

extern void init(float*, float*, int);
extern void output(float*, int);

void vec_mult(float *p, float *v1, float *v2, int N)
{

int i;
init(v1, v2, N);

#pragma omp target if(N>THRESHOLD1) \\
map(to: v1[0:N], v2[:N]) map(from: p[0:N])

#pragma omp parallel for if(N>THRESHOLD2)
for (i=0; i<N; i++)

p[i] = v1[i] * v2[i];
output(p, N);

}

Asynchronous Offloading

• Use existing OpenMP features to implement asynchronous offloads.

#pragma omp parallel sections
{
#pragma omp task

{
#pragma omp target map(to:input[:N]) map(from:result[:N])
#pragma omp parallel for

for (i=0; i<N; i++) {
result[i] = some_computation(input[i], i);

}
}

#pragma omp task
{

do_something_important_on_host();
}

#pragma omp taskwait
}

host
target

host

device Clause Example

int num_dev = omp_get_num_devices();
int chunksz = length / num_dev;
assert((length % num_dev) == 0);
#pragma omp parallel sections firstprivate(chunksz,num_dev)
{

for (int dev = 0; dev < NUM_DEVICES; dev++) {
#pragma omp task firstprivate(dev)

{
int lb = dev * chunksz;
int ub = (dev+1) * chunksz;

#pragma omp target device(dev) map(in:y[lb:chunksz]) map(out:x[lb:chunksz])
{

#pragma omp parallel for
for (int i = lb; i < ub; i++) {

x[i] = a * y[i];
}

}
}

}
}

hhost
target
target
target
target

Target update Construct Example

#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)
{

#pragma omp target device(0)
#pragma omp parallel for

for (i=0; i<N; i++)
tmp[i] = some_computation(input[i], i);

update_input_array_on_the_host(input);

#pragma omp target update device(0) to(input[:N])

#pragma omp target device(0)
#pragma omp parallel for reduction(+:res)

for (i=0; i<N; i++)
res += final_computation(input[i], tmp[i], i)

}

host
target

host
target

host

map Clause
• The target construct

creates a new device data
environment and explicitly
maps the array sections
v1[0:N], v2[:N] and p[0:N] to
the new device data
environment.

• The variable N implicitly
mapped into the new device
data environment from the
encountering task's data
environment.

44

extern void init(float*, float*, int);
extern void output(float*, int);

void vec_mult(float *p, float *v1, float *v2, int N)
{

int i;
init(v1, v2, N);

#pragma omp target map(to:v1[0:N],v2[:N]) \\
map(from:p[0:N])

#pragma omp parallel for
for (i=0; i<N; i++)

p[i] = v1[i] * v2[i];

output(p, N);
}

Map-types:
• alloc: allocate storage for corresponding variable
• to: alloc and assign value of original variable to corresponding variable on entry
• from: alloc and assign value of corresponding variable to original variable on exit
• tofrom: default, both to and form

