‘ Intel) Look Inside”

Strategies for Effective Offloading in GROMACS




Offloading Overview

GROMACS - Molecular Dynamics
Developed with Eclipse PTP Synchronized Projects
(full disclosure: | am a developer for PTP)

Overall Strategy
- Offload nonbonded-force calculations - roughly 30-40% of compute time
- Asynchronously run bonded-force calculations on host
Challenge - Minimize Offload Overhead
Minimize amount of data transfer and number of transfers
Minimize memory allocation and management
- Avoid heavy use of hidden offload mappings

SC15 MIC Tuning BoF



Minimizing Data Transfer

Serialize data - avoid multiple transfers even in same offload
Minimize amount of data transferred

3 types of data
- Volatile: Update every offload
Periodic: Update occasionally
Constant: Never update

Data Type Size Offload Overhead Time
Volatile 382 KB 4.28 ms

Periodic (every 5th time step) 4.80 MB 8.02 ms

SC15 MIC Tuning BoF



Minimizing Memory Overhead

Allocations on coprocessor can degrade performance
- Avoid allocating during offload
- Allocate buffers separately and only once if possible
- Avoid using hidden offload table for memory mappings
Mysterious slowdowns occurred when using offload tables
Failure Case 1: Automatically mirror all (most) allocations
Failure Case 2: Allocate a new buffer prior to offload
Failure Case 3: Use internal mapping instead of pre-allocate option

Failure case 2 is root cause?

Data Type Reuse Buffer Overhead Time New Buffer Overhead Time
Volatile 4.28 ms 9.71 ms

Periodic (every 5th time step) 8.02 ms 16.32 ms

SC15 MIC Tuning BoF



Final Offload Pragma

#pragma offload target(mic:0) \
nocopy(nbl_lists) \
nocopy(nbl_buffer) \
nocopy(ci_buffer) \
nocopy(sci_buffer) \
nocopy(cj_buffer) \
nocopy(cj4_buffer) \
nocopy(type_buffer) \
nocopy(lj_comb_buffer) \
nocopy(q_buffer) \
nocopy(phi_buffer_sizes)\
in (cpu_out_packet[0:packet_in_size] : into(phi_in_packet[0:packet_in_size]) REUSE targetptr) \
out(phi_out_packet[0:packet_out_size] : into(cpu_in_packet[0:packet_out_size]) REUSE targetptr) \
signal(&off_signal)

SC15 MIC Tuning BoF



Insights

Benchmarking is essential
Code design is key

Large data structures were the biggest problem
- Other problem was built-in assumptions about architecture
Minimize disruption by separating out offload code
- Suggestion: Design with coprocessor interface and multiple architectures in mind
Recommendations
Benchmarking is essential. GROMACS has built-in timing library so it is easy to measure
sections of code
- Simplify - avoid heavy use of offload API
More transparency needed for offload API
Remaining problems and current work
- Offload overhead still a bit high
- Work balancing can be improved

- Extending to multiple coprocessors inteD |6
SC15 MIC Tuning BoF



