‘ Intel) Look Inside”

Strategies for Effective Offloading in GROMACS




Offloading Overview

GROMACS - Molecular Dynamics
Developed with Eclipse PTP Synchronized Projects
(full disclosure: | am a developer for PTP)

Overall Strategy
- Offload nonbonded-force calculations - roughly 30-40% of compute time
- Asynchronously run bonded-force calculations on host
Challenge - Minimize Offload Overhead
Minimize amount of data transfer and number of transfers
Minimize memory allocation and management
- Avoid heavy use of hidden offload mappings
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Minimizing Data Transfer

Serialize data - avoid multiple transfers even in same offload
Minimize amount of data transferred

3 types of data
- Volatile: Update every offload
Periodic: Update occasionally
Constant: Never update

Data Type Size Offload Overhead Time
Volatile 382 KB 4.28 ms

Periodic (every 5th time step) 4.80 MB 8.02 ms
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Minimizing Memory Overhead

Allocations on coprocessor can degrade performance
- Avoid allocating during offload
- Allocate buffers separately and only once if possible
- Avoid using hidden offload table for memory mappings
Mysterious slowdowns occurred when using offload tables
Failure Case 1: Automatically mirror all (most) allocations
Failure Case 2: Allocate a new buffer prior to offload
Failure Case 3: Use internal mapping instead of pre-allocate option

Failure case 2 is root cause?

Data Type Reuse Buffer Overhead Time New Buffer Overhead Time
Volatile 4.28 ms 9.71 ms

Periodic (every 5th time step) 8.02 ms 16.32 ms
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Final Offload Pragma

#pragma offload target(mic:0) \
nocopy(nbl_lists) \
nocopy(nbl_buffer) \
nocopy(ci_buffer) \
nocopy(sci_buffer) \
nocopy(cj_buffer) \
nocopy(cj4_buffer) \
nocopy(type_buffer) \
nocopy(lj_comb_buffer) \
nocopy(q_buffer) \
nocopy(phi_buffer_sizes)\
in (cpu_out_packet[0:packet_in_size] : into(phi_in_packet[0:packet_in_size]) REUSE targetptr) \
out(phi_out_packet[0:packet_out_size] : into(cpu_in_packet[0:packet_out_size]) REUSE targetptr) \
signal(&off_signal)

SC15 MIC Tuning BoF



Insights

Benchmarking is essential
Code design is key

Large data structures were the biggest problem
- Other problem was built-in assumptions about architecture
Minimize disruption by separating out offload code
- Suggestion: Design with coprocessor interface and multiple architectures in mind
Recommendations
Benchmarking is essential. GROMACS has built-in timing library so it is easy to measure
sections of code
- Simplify - avoid heavy use of offload API
More transparency needed for offload API
Remaining problems and current work
- Offload overhead still a bit high
- Work balancing can be improved

- Extending to multiple coprocessors inteD |6
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